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ABSTRACT

We present a methodology to test multiple hypotheses on
the distribution of a random variable when the hypotheses
are parameterized by fuzzy variables. The proposed ap-
proach has a Bayesian flavor in the sense that the objective
is to minimize a fuzzy average decision error probability by
a proper choice of decision regions. We use a scalar index,
called the total distance criterion (TDC) ranking index, in
order to rank the fuzzy average decision error probabilities
of different decision rules. We derive the optimal decision
rule which minimizes the TDC index of the fuzzy average
_decision error probability. As an example we apply the
general approach proposed here to the classification of the
fuzzy mean of a Gaussian random variable.

1. OVERVIEW

In many parameteric statistical decision problems, one has
to make a decision in the presence of some uncertainties
about the parameters in the statistical model of the ob-
served random variables. Examples include estimation of
signal parameters in additive noise of unknown power and
detection of a signal of unknown amplitude. Many power-
ful statistical methods exist that deal with such uncertain-
ties including invariance techniques, min-max methods and
probabilistic modeling of the unknown nuisance parameters
(1}. The conventional methods assume that the unknown
parameters belong to parameter classes with sharp bound-
aries. On the other hand, there are many examples where
the very definition of a parameter class calls for graded
boundaries. An example from geology is the definition of
lithofacies classes based on sand and clay content: shaly
sand or sandy shale are two lithofacies classes that are de-
fined as subsets on the sand content interval of [0%, 100%).
A geologist’s perception of the two lithofacies classes corre-
sponds to graded and possibly partially overlapping subsets
of [0%, 100%) rather than to disjoint subsets of the same
interval with sharp cutoffs. Parameter classes that have
a graded boundary can be modeled as fuzzy sets over an
appropriate domain. When a parametric statistical deci-
sion problem involves fuzzy parameter sets of the param-
eter space, the conventional statistical methods cannot be
used directly to derive optimal decision rules. Another ap-
proach should be adopted which recognizes the fuzziness of
the parameter classes. In this paper, we present a multiple
hypotheses testing framework which can be used when the
hypotheses are parameterized by fuzzy variables.
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Our result is a generalization of the binary fuzzy hy-
pothesis testing result reported in [2]. We derive the op-
timal decision rule for M-ary fuzzy hypothesis testing and
apply this rule to the classification of the fuzzy mean of a
Gaussian random variable.

We start with M hypotheses parameterized by fuzzy
variables. Adopting a Bayesian framework, i.e. assuming
priors on the hypotheses, and using fuzzy mathematics, we
show that the average error probability is a fuzzy number.
The fuzzy error probability depends on the choice of the
decision regions over the sample space. In order to rank
the fuzzy probabilities resulting from different choices of
the decision regions, we use an index on the fuzzy proba-
bilities, called the “total distance criterion (TDC) ranking
index” [2]. A decision rule which minimizes the TDC of the
fuzzy average error probability is said to be “optimal”. We
prove that the optimal decision rule performs a comparison
among the TDC indices of the fuzzy likelihood functions
weighted by their prior probabilities and chooses the hy-
pothesis for which the weighted TDC index of the fuzzy
likelihood function is largest.

To illustrate the method we_consider the estimation of
an unknown fuzzy component ¢ in Gaussian noise, where
the possible values of the fuzzy component are fuzzy num-
bers &1,...,6m. This kind of problem arises in amplitude
shift keying in communications [5], where the amplitudes
are subject to drift about nominal values, in cement bond
logging [4], where the amplitude of the signal indicates the
quality of the cement bond but the amplitude classes do not
have sharp boundaries, as well as in textural identification
of rocks based on grain size [3], where the grain size has a
distinct but fuzzy mean for each rock type.

2. STATEMENT AND SOLUTION OF THE
MULTIPLE FUZZY HYPOTHESES TESTING
PROBLEM

Throughout the text, we denote random numbers by bold-
face letters, such as X, and fuzzy sets by a tilde on top of
the variable symbol, such as £. Before we start, let us give
the definitions of some fuzzy logic terms. A fuzzy set @ over
A is defined by its membership function psz(-) which is a

mapping from A to the unit interval [0, 1]. The a-cut (&)~

of a fuzzy set d is defined by (a)* €ef {alpa(a) > a}. A

fuzzy number is a fuzzy set £ over the real line R with the
following properties: its maximum membership value is 1;
its membership function is piecewise continuous; and it is a
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convex fuzzy set, i.e. for any a1,a2 € R and any A € [0, 1],
the membership function satisfies pa(Aa1 + (1 — A)az) >
min{pa{a1), pa{az)}. The a-cut of a fuzzy number & is
specified by its left and right end points, denoted by [g]{
and [&]5, respectxvely The support of a fuzzy number a is
the open interval ([a}?, [a]3)-
Given a random variable X consider M hypotheses Hr

X ~ fx Imsfms ™ = 1, , M, where f,”1 o fle
are given proba.blhty densxty functlons parameterized by the
fuzzy numbers &1, . .., €, respectively. Now for any set of
fixed values &1,..., §M of the fuzzy numbers &1,...,6m and
for given prior probabilities p1,...,pm on the hypotheses

Hi,..., Hu, the average error probability P. can be written
as
M
P=Y [ pefcimento)ds M
m=1YR—Rm

In (1), for each m = 1,..., M, the set R, is that subset of
the real line R on which the hypothesis Hy, is decided.

For any value z € X of the random variable X and for

, M, define the function gz.m(-) by gaz:m{€) «f

Fximie(z). The function gz;m(-) induces a fuzzy set §z;m wef
Gzim (E-m) over the set of non-negative real numbers. Given
the fuzzy set &m and the function gs;m(-), the membership
function of the fuzzy image set §z;m is found by applying
the extension principle [6] which states that:

anym=1,..

def
Hiaim(g9) = sup

#e,, (€) (2)
& g=gz;m (§)
Now assume that the fuzzy set §;» whose membership
function is computed through the extension principle as in
(2) is a fuzzy number. Then, since any linear combination
of non-negative fuzzy numbers using positive coeflicients
results in a non-negative fuzzy number, the average error
probability P. is a fuzzy number. The fuzzy average error
probability will be denoted by Pe..
_ In order to rank the fuzzy average error probabilities
P, resulting from different choices of the decision regions
Rm, we use an index on the fuzzy probabilities called the
“total distance criterion (TDC) ranking index” [2]. The
TDC index of an arbitrary fuzzy number a is defined by

1
1@ [ o + @l o ©
]

where [3]{ and [d]§ are the left and right end points of the
a-cut of @. A decision rule which minimizes the TDC of the
probability of error is said to be “optimal”. The TDC in-
dex has a number of properties previously established in [2]
which make it a suitable representation of fuzzy numbers.
These properties include the following: i) the TDC index of
a crisp number is the crisp number itself, i.e. f d =a € R,
then T'(&) = a; and ii) the TDC index is linear under fuzzy
addition and scalar multiplication by non-negative num-
bers, i.e. if @4, and a2 are two fuzzy numbers and c is a
non-negative scalar, then T'(ca1 + @2) = cT'(a.1) + T(G2).
Using these properties, the TDC index of the fuzzy proba-

bility P. can be written as:

T(P)_Z/

The following theorem specifies the optimal non-ran-
domized decision rule.

Theorem 1 The TDC indez T(Pe) of fuzzy average error
probability is minimized when the decision regions R, are
chosen as follows:

T(gz;m) de. 4)

Rm

« def e - .
Rm =TRpn = {2|pmT(Gzim) > 25T (§2:5), V5 # m}
form=1,....M (5)

Proof: Denote the fuzzy average error probability for the
decision regions specified in (5) by P.'. We will show that
if P, is the fuzzy average error probability for any other
choice of decision regions, then T(P.) — T(P;) > 0. For
an arbitrary set of decision regions Ri,...,Rum, the TDC
index of the fuzzy average error probability can be written
as:

. M
IR) =Y [ poTGem i =tn@lde, @)
m=1

where ¢, (z) is the indicator function of R, form =1,...,
M, ie. ¢m(z) =11z € R and ¢m(z) = 0 otherwise.
For any z € R, there is only one m € {1,..., M} for which
¢m(z) # 0. Hence the TDC equation (6) can be equiva-
lently written in the following form:

. M M
T(R) = Y [ onTGum) 1= bm(e] Y i) . (1)

Therefore,

) -TE) = 33 / (BT (Geim)

m=1n=1

—PnT (Gzin)) ¢ (2)dm () dz (8)

Now ¢},(z) = 0 unless m = Mmac def arg max; p; T(§z;5)-
Hence

T(Pe) - T(P z / (pmmazT(gI mmuz) Pn (gfE n))
n=1
$n(T)Prmmas (€) dT (9)
and this proves the theorem because ¢n(z)¢7,,...(z) > 0
Vz € R. (QED)

The optimal decision rule specified by (5) forms the
main theoretical result of this paper and is an M-ary exten-
sion of the binary hypothesis test proposed in [2]. An equiv-
alent way of stating Theorem 1 is the following: the optimal
decision rule chooses that hypothesis for which the weighted
TDC index of the fuzzy number §;;m is largest. When
the parameters &, are non-fuzzy, T(fz;m) = geim(ém) =
fx|mse.n (z) and the optimal decision rule (5) reduces to the
maximum a posteriori (MAP) decision rule, as expected.
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3. CLASSIFICATION OF THE FUZZY MEAN
OF A GAUSSIAN RANDOM VARIABLE

Now suppose that the observed variable X is modeled as
the sum of a fuzzy component ¢ and a zero-mean Gaussian
random component N. The objective is to classify the mean
£ of X as one of M fuzzy numbers &1,...,€m. Under each
hypothesis H, and for any fixed value £ of the fuzzy number
§, the likelihood function of X has the form fx|m.(z) =
72;17:7 exp(—ﬁf,‘,—;—%ﬁ). Under the m*® hypothesis Ho, the

T . . def
fuzzy number £ can assume values in the interval X,, =

([Eml2, (Em]S)-

Proposition 1 Let the membership function kg, (&) of €m
be symmetric about the mid-point [Em]o % (Em]d +1Em13)/2
of Xm. Then for any value z of the random variable X, the
fuzzy set §z;m induced by the mapping gz.m (£) = fx|m(z) =
72%5- exp(-—-%—;iﬁ) is a fuzzy number.

Proof: By virtue of the symmetry of B, (€) about & = [€mlo

and the symmetry of 8, (¢) & -2';1;(:1: —€)? about ¢ = z, the

fuzzy number §.;» depends only on the absolute difference
|z — [€m]o] and it suffices to consider z < [émlo- We distin-
guish two cases: i) £ < [£m]? (z is outside and to the left
of the support Xm of €m); and ii) [m]d < = < [€m)o (z is
within the left half of X;,). For any &, we have g,;m(£) €
(0, 75=x]. SO, gy () = O for any g & (0, 7eleg]. Sup-
pose that g € (0, 72;—07] Then the equation ge;m(€) = g

has two solutions: ¢(g;z) = z — \/—202In(v2na2g)
and @ (g;2) = z + \/—202In(v2n02g). Therefore the

membership function of z;m, obtained via (2), is given by:
Biam(9) = maxi=1,2{pg, (€¥)(g;z))}. First we will show
that in both cases i) and ii),

pe, (€P(g;2)) > pe, (6P (g;2)), (10)

such that pg,..(9) = g, (€@ (g;z)).
Case 1 (x < [E.m]?):

EMDgz) = z-1/-202 In(v27ro2g)
< z
< mlS. (11)

Therefore, £(*)(g; z) lies outside the support Xy, of £m and
#e, (67 (g:2)) = 0. Since pg,, (€™ (g;2)) 2 0, (10) holds.

Case 2 ([€n]?, 2 < [émo): For g < gaim([ém]?), again we
have £ (g;z) < [€x]? and the conclusion of Case 1 is
still valid. Suppose that gz.m([m]]) < g < 337 Let

6= [€m)o — = and T(g) &t /=202 In(v27r02g). Then
£D(g;2) = 2 — T(g) = [€m)o — (6 + I(g)) and £ (g;2) =
z+I(g) = [€m]o — (6 — ['(g)). It can be shown that for any
m >n2 >0, pg ([Emloxtnz) > pg, ([Emlotm). Since § > 0
and I'(g) > 0, we have |6 — I'(g)| < |6 + [(g)]. Therefore,
choosing 72 = |6 ~T'(g)| and m = |6+I'(g)|, we obtain (10).

It follows that §z;m satisfies the three conditions for being
a fuzzy number, as shown below.

1) p3,... (9) is a continuous function of g: b, (€) and ¢ (g;
z) are continuous functions of £ and g, respectively. There-
fore, the composite function pg, ... (g) = Bé,. (D (g;z)) is a
continuous function of g. .

2) Jz;m is a normal set: Let g = 72%:; exp(0z ({¢m]o)). Then
H§zim (g) = #Em([gmlo) =1

3) §z;m is a convex set: Let g1,92 € (0, W’l;?] Without
loss of generality, assume g1 < g2. For any X € [0, 1],

Moo g1 + (1= Ng2) =pig, (6P g1 + (1~ Ngni2)). (12)

£@(g;z) is a monotonically decreasing function of g, so
£ (g2;2) < EP(Ag1 + (1 - N)g2;2) < £®(g1;7). Hence
there exists a A* € [0, 1] such that

EP g1+ (1~ Ng2iz) = 26D (g1;2) + (1 = A7) (ga; ).

(13)
Being a fuzzy number, by definition fm is convex, i.e.

pe., (AEP (g5 2) + (1 = A)ED (g2; 7))
> g}g{#gm(ﬁ(z)(g-;w))}- (14)

Finally,

pe, €95 2) = tgem (g0), i=1,2. (15)

Combining (12)-(15), we obtain g, (Ag1 + (1 — A)ga) >
mini=1,2 {#3, .. (9:)}, which establishes convexity. (QED)

Because §;;m is a fuzzy number, then, as we noted in
Section 2, the fuzzy average error probability P. is a fuzzy
number. Henceforth we assume that for each m, the mem-
bership function p; () is symmetric about the mid-point
[E-m]o and therefore by Proposition 1 the fuzzy average error
probability is a fuzzy number denoted by P..

As shown in Theorem 1, the decision regions R,, are
determined by the maximum of the weighted TDC indices
of the fuzzy numbers pmgz;m. The TDC index of §.m is

found by applying (3) to Jeim: T(Gaim) = [, 3([Gem)s +

[§s:m]5) dr. The mapping go;m(€) = weloy exp(—E=82) s
symmetric about z, i.e. gz;m(€) = gz;m(2z — £). Making
use of the symmetry of the membership function kg, (€)
and the symmetry of the mapping g.;m(£), we obtain:

( [é‘m]O—K-M](l’ - .
3 [ (66u+Te ~ €D + G ~ o ~ nle)

e, (Emlo = ) du, if & < [Em)? or 2 > [Em]?

- [ém]ﬁ_[ém]? - -
TGm=y 3 ([ 6+ le — Enlobi, (Emlo — ) du
0

[ém]O—z _ .
"'/ G(u—lz — [Emlolug, ([Emlo — w) du
0

| +7irre. @) i Enl? < 7 < 8

(16)
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where ,u'e-m (-) is the derivative of the membership function

Hea () and G(a) ¥ 2l exp(~ 7).

The TDC index expressions given in (16) are valid for
any symmetric membership function g (-). Now assume
that the membership functions p; (£) all have the same
functional form p(€), but differ only in their locations on the
real line. More specifically, let u(£) be a given symmetric
membership function centered about £ =0. Let A > 0O bea
given shift value and for m =1,..., M define p;_(£) such

that g (€ +mA) def (). For simplicity assume that the
function p(¢) is differentiable at all points in its support
except possibly at £ = 0.

Proposition 2 If the hypotheses Hi,...,Hy are equally
likely, i.e. if p1 = ... = py, and the membership functions
{ne, (€)} are defined as above, then the optimal decision
regions Ry, are:

R:n = {zlﬂm—l <z< .Bm}: (17)

where the thresholds B1,...,Bm-1 are the mid-points of the

, , def >
intervals between consecutive fuzzy numbers: Bm = % ([§m]o
def

+[£m+1]0) m=1...,M-1; e o and By =
Proof: T(§z;m) is a differentiable function of z over (—oo,
[€m]o) and is continuous for all z. Using Leibniz’ rule [7]
to differentiate T'(§z;m), we obtain dT(§z;m)/dz > 0, for
all z < [€m]o. In other words, for £ < [€m]o, T(Jz;m) is a
monotonically increasing function of z. The monotonic-
ity of T'(§z;m) over (—oo,[ém]o) combined with the fact
that T(§z;m) is symmetric about ¢ = [€m]o and continu-
ous at ¢ = [€n]o implies that for arbitrary m and arbi-
trary 2, T(gz;m) is a monotonocially decreasing function of
|z — [ém]o]. The membership functions are shifted repli-
cas of each other so that T(§z;n) = T(Fz4(m-n)a;m) for all
z,m,n. Therefore,

T{Gzim) > T(Gzin)
> T(gl‘ﬁf) > T(§z+(m—n)A;m) - , (18)
= |z = [mlo] < |z +(m —n)A — [€n]o]

where the second implication follows from the fact that
for any given m, T'(§z;m) is monotonically decreasing away
from = = [£m]o. Suppose that n < m — 1. We will show
that

1z — [€mlo] < |z + (m — n)A — [Em]o] &= T > Bm—1 . (19)

First, we have

R Rl
o Mz‘[gﬂio : (20)
_ﬂ/_’
Therefore,

z+(m-n)A—[nlo>0,Yn<m—1
0 A } (21)

Second, the following inequality is satisfied for all z:
g —[Emlo<z+(m—n)A—[fnlo,¥n<m—1. (22
Third, Vn < m — 1,
z = mlo > = (z + (m = n)A = [€nlo) |
= z-—[fn]o>-Bge
T - [E]n]O >-—%"
— > [Em]0+:[2€m—1]o = Bm1

(23)

Combining (18)-(23) we conclude that 8m-1 < z if and only
if T(gzim) > T(Gzin), Yn < m — 1. One can also show in a
similar way that z < B, if and only if T(ge;m) > T(Gzu),
V1 > m. Finally, since the point z = §,, has zero probability
measure under the fx|m;,.’s, we can assign the right end-
point £ = B, to R, without changing the resulting fuzzy
average error probability. (QED)

The thresholds £, ..., 8m-1 in (17) are independent of
the form of the membership functions: as long as all hy-
potheses are equally likely and the membership functions
are shifted versions of a given symmetric membership func-
tion, the decision rule specified in Proposition 2 is optimal.
The probability of error when H,, is the true hypothesis is
given by P(E|Huim) = 1- (@(8azin) - g(fnztzn))),
where ®(-) is the standard Gaussian cumulative distribution
function. The function P(E|Hm;") induces a fuzzy number
between 0 and 1, called the fuzzy conditional probability
of error given Hn. The fuzzy average error probability P.
can be written as: P, = (1/M) Z:’;l P(E|Hm;&m). The
a-cuts for B, are directly obtained from the a-cuts_of the
fuzzy conditional probabilities P(E|Hm;&m) as: (Pe)* =
(1/M) EZ=1(P(E|Hm;§.m))°‘. By the resolution theorem
[6], the complete set of a-cuts of a fuzzy set uniquely deter-
mines the membership function of the fuzzy set. Therefore
once the a-cuts of the fuzzy conditional probabilities are
computed, the membership function of the fuzzy average
error probability is specified.
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