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ABSTRACT

We wish to formulate a test for the hypothesis X; ~
N(u,0?) for i = 0,1,..., N — 1 against unspecified alter-
natives. We assume independence of the components of
X = [Xo,X1,..,Xn~n-1]. This is a problem of universal
importance as the assumption of Gaussianity is prevalent
and fundamental to many statistical theories and engineer-
ing applications. Many such tests exist, the most well-
known being the x? goodness-of-fit test with its variants
and the Kolmogorov-Smirnov one-sample cumulative prob-
ability function test. More powerful modern tests for the
hypothesis of Gaussianity include the D’Agostino K2 and
Shapiro-Wilk W tests. Recently, tests for Gaussianity have
been proposed which use the characteristic function. It is
the purpose of this paper to highlight and resolve problems
with these tests and to improve performance so that the
test is competitive with, and in some cases better than, the
most powerful known tests for Gaussianity.

1. CHARACTERISTIC FUNCTION BASED
TESTS OF DISTRIBUTION

We assume X, for all ¢, has the probability density func-
tion )Spdf) fx(z) and cha.ractenstlc function (cf) ¢x(t) =
E[e’**]. If X is Gaussian then it is uniquely characterised
by the of ¢x(t) = exp(jut — 0*t?/2). Koutrouvelis [3] in-
troduced a test of distribution based on the empirical cf
(ECF),
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We produce a realisation graph (Figure 1) consisting of
overlayed realisations of the (absolute value) ECF with X; ~
N(0,1) and N = 64. The fact that the variance of the
ECF approaches a constant (1/2N) with ¢ is pointing to
a systematic non-optimality in its use. It turns out that
the estimator, while being unbiased, has unacceptable vari-
ance over all values of ¢ and must be replaced. Epps [2]
formulated a general estimator based on Koutrouvelis’ pro-
posal, using a base function qu(X.,tk), =0,1,...,T -1,
and a sum-of-squares statistic Q% (t) ~ x%_, where t =
[to,t1,...,t7—1]. The performance of this test, which we will
call the Koutrouvelxs—Epps, or K-E, test, is controlled by
the choice of t and Q% (Xi;¢x). We highlight the following
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problems encountered with usmg the test in practice as im-
plemented with choice of % % (Xi;tx) corresponding to the
ECF.

1. For large values of T' numerical and computational
problems exist in the computation of Q£ (t). Also the
distributional assumptions of the test statistic fail -
indicating that the more information we try to use,
the less valid our test becomes.

2. Given that T must be small the performance of the
test is critically dependent upon the choice of t [2, 5,
4], which cannot be optimised in any even reasonably
general way.

3. Estimates for z and o are allowed to be unbounded
and are chosen so as to minimise Q% (t). When T is
small this decreases the ability of the method to re-
solve many non-Gaussian processes as their ECF’s
merely have to correspond to that of an arbitrary
Gaussian cf at a small number of points.

4. The ECF is an extremely poor characteristic function
estimator.

5. The inference that the test does not assume indepen-
dence of the data is falsified by simple experimenta-
tion with synethetic data.

In this contribution we resolve problems (1)-(4) by using an
alternative cf estimator and defining a new test statistic.

2. THE KERNEL CHARACTERISTIC
FUNCTION ESTIMATOR

We formulate the kernel cf estimator (KCFE) in analogy
with the theory of kernel density estimation [8]. The most
general formulation for the KCFE $x (t) of the cf of an
independent, indentically distributed random sample X =
[Xo,Xl, ...,XN_1] is [1],
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where, px,; is the cf domain kernel function (ckf) which in
general may depend on the data and the sample number.
We can note that the convolutive smoothing operation of
kernel density estimation has been replaced by a multiplica-
tive smoothing operation in the cf domain. While the result
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of the operation in both domains is a bias-variance tradeoff
the optimal form of smoothing in each domain will neces-
sarily be different. The data dependent KCFE (DKCFE)
can be simplified further,

bx (t; px) = px (t)dx (t;1) (3)

where, ¢x (t;1) = ¢% (t) is just the ECF. We can note that
the ECF corresponds to a “zero-width histogram” in the
density domain, which is not generally highly regarded as
a density estimator. Likewise the performance of the ECF
as an estimator of the cf is poor. Figure 2 shows multiple
realisations of an adaptive KCFE (magnitude). Compar-
ison with Figure 1 clearly displays the improved variance
performance. More elaborate studies are given in [1].

3. THE FIXED KERNEL CHARACTERISTIC
FUNCTION ESTIMATOR

The most general form of KCFE which is amenable to sta-
tistical analysis is the fized KCFE (FKCFE) whose ckf de-
pends only upon t. Often an optimal FKCFE can then
be approximated by a DKCFE. To examine performance in
more detail we first seperate real and imaginary components
of the FKCFE,

Rox (t; ) = Rp()RPx (1) — Sp(H)IPx (1) (4)

Sx (t9) = Re(t)Idx (t;1) + Sp(t)Réx (5;1)  (5)
where ® and & are the real and imaginary component op-
erators respectively. We can now obtain the expectations
of these components,

E[Réx (t; 0)] = Ro(t)Rox (t) — Sp(t)Sox ()  (6)

E[S¢x (£ 9)] = Rp(t)S¢x (t) + Se(t)Réx (1) (7)
‘We also obtain the estimator variances,

VIREx (8 9)] = [R7p()(1 + Réx (2)) — 2E°[Réx (t; 9)]+

Fo(t)(1 - Rpx (2t)) — 2Rp(D)F(t) S (20)] 511\7 ®)
VISéx ()] = [R7p(t)(1 — Réx (2t)) — 2E*[Sx (t- o)1+

S p(t)(1 + Rox (2t)) + 2R (t) S (t) S x (2t)] (9)

From these statistics we can formulate a mean square error
(MSE) criterion for obtaining the best ckf for the estimator
of both the real and imaginary components of the cf. If a
particular function of the cf was required, for example its
magnitude or phase, then alternate statistics could be de-
veloped. Note that as IV increases the optimum ckf should,
for consistency, approach that of the ECF,
lim o%(t) = lim ¢%(t) =1, (10)
N—oco Nooo
This does not correspond to the case that we are most inter-
ested in, which is that of testing distribution with a small
number of samples when the power of the test is most im-
portant.

Minimum Integrated Mean Square Error FKCFE.
We formulate the FKCFE in the sense of the minimum
integrated MSE for the real and imaginary components in-
dividually. For estimating R¢x (t) we obtain the ckf ¢®(t)
minimising,

IM[Rx (t; o™)] =
LVIRGx (t; 0™)] + (E[Rpx (t:7 )] — Rox (¢))%dt (11)

where I M represents the integrated MSE. A similar result
is obtained for estimating S¢x (¢) with a ckf ¢°(¢),

IM[S¢x(t; )] =
L VIS6x (5 )] + (E[Séx (%)) — Sox (1)) *dt (12)

4. MINIMUM INTEGRATED MSE GAUSSIAN
FKCFE FOR THE GAUSSIAN CASE

For zero-mean symmetrical processes it is easy to see that

optimum solutions are glven by Se®(t) = RS (t) = S¢S (t)
0, leaving us to select Rp®(t). A natural choice of ckf for
estimation of a Gaussian cf would be itself Gaussian,
—aitz /2

Pi(t)=e (13)

where og is the ckf (inverse) width. This is also expected
to have a wide range of applicability amongst non-Gaussian
processes. Substituting the Gaussian ckf and Gaussian cf
for X into (11) and minimising with respect to o, gives the
optimum width for a Gaussian ckf for a Gaussian process,
oR!,
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An approximation to the solution (which can be obtained
numerically) is given by on = o(2/3N)*5. As before,
numerical analysis gives a more accurate approximation as
opr = 97gN~2.

5. CHARACTERISTIC FUNCTION BASED
TEST STATISTICS

We choose to standardize our data in order to avoid having
to test against all possible values of (1, 0?). This is approxi-
mately equivalent to simply testing the null hypothesis with
(1, 8%) where we use the usual sample estimates, optimum
under the Gaussian hypothesis. However, we shall not have
to formulate our test for all possible values of (f,5?) ).
From our data X we form the standardised data Y =
(X —ji)/& and the null hypothesis Ho : ¢y (t) = ¢o(t) where
¢o(t) is the cf of Y under the null hypothesis. We can note
that the components of Y are independent and, for N > 30
they are approximately distributed as Gaussian.

We have experimented with many different forms of KCFE
for the problem of testing Gaussianity. We note that the
issue of estimnation is quite different from that of detection.
That is, we require our KCFE to perform quite well under
the null hypothesis, but we recognise that it must also we
able to adapt for the alternate hypotheses. Clearly, for ex-
ample, we cannot maintain ¢%(t) = 0 if we hope to detect
statistical assymetries. DKCFE’s formulated for the exact
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purpose of adapting to the data proved to display too great
a variance for the Gaussian case. Whereas AKCFE’s formu-
lated for the Gaussian case failed to perform under some al-
ternatives (which were essentially “Gaussianified”, usually
as a result of the filtering of high ¢ components in the cf do-
main). Generally then, the additional analytic and, usually,
computational, complexity that occurs with more sophisti-
cated KCFE techniques is not justified by any improvement
in the results of their omnibus use. Thus we revert to the
simplicitly and convenience of the Gaussian FKCFE wish
we have found to have performance virtually equal to more
intractable methods. We do note however that potentially
huge improvements in specific cases (against specified alter-
natives) is almost always possible.

General Test Statistics. The real and imaginary parts
of the cf contain quite different information and we intend
to form two test statistics based on the Gaussian ckf:

Q% = sup | {dv (&™) — 65 (1)} (15)

Q% = sup IS {v (&%) - 65 1)} (16)

where ¢2(t) and ¢ (t) are expectations, under the null hy-
pothesis, of ¢y (¢; %) and ¢y (¢; ) respectively. Note that
the absolute difference statistic was found to provide the
best detection performance even when derivations based on
integrated MSE were used to form the estimators. Since,
in general, these two statistics are not independent (making
joint tests unwieldy) it is desirable to combine them in some
sensible manner in order to obtain a test using informa-
tion present in both. Thus, we have formed the magnitude
KCFE test as,

Qx = sup |(Rev (t; ™) + j9¢r (t;¢))

~®ReZ@®) +5%S ) a7
Other obvious forms of combination were experimented with,
not altering the results significantly. Q% will be, theoret-
ically, an omnibus test which is expected to be, in gen-
eral, more powerful than Qx for symmetrical alternatives
and less powerful for asymmetrical alternatives. Q%, on
the other hand, is only expected to be useful for detecting
asymmetrical alternatives.

Gaussian FKCFE Test Statistics. Based on the ideas
expounded above we form our KCFE from a fixed Gaus-
sian ckf, seperately estimating the real and imaginary cf
components.

by (t) = e "R PRy (1;1) + je 73 2Sdy (1) (18)

with ¢%(t) = e~ (1+7%)*/2 and ¢2(t) = 0. We use the opti-
mum value of ox under the null hypothesis og ~ .970 N ™2,
Unfortunately oy = oo is optimum for the estimation prob-
lem under the null hypothesis, so this lends us no clue as to
how to optimise the detection problem for the imaginary cf
component. We have found empirically that og =~ 1.250%
provides good power (at least against the alternatives we
chose). Finally, substituting these estimators into the test

statistics (15)-(17) we calculate significance level thresh-
olds empirically with multiple realisations of X ~ N(u,a?).
Thresholds for N = 64 at the 5% level of significance are
found for (Q%,Q%, Qx) to be (.1053,.0973, .0151).

6. RESULTS AND DISCUSSION

We have implemented the K-E test with three values of t re-
comended in the literature, t; = [.5,1.5,2.5,3.0]/6 [5], t2 =
[-3,-2,-1,1,2,3]/6 [4] and t3 = [1,1,2, 21/& (2]. Also, we
have implemented the classical Pearson x* goodness-of-fit
test and two powerful modern techniques: the Shapiro-Wilk
W [7] and the D’Agostino K? [6] tests. We have calculated
all percentage points empirically. Generally it was found
that all theoretical values were significantly in error:for N
not large, and tended to reject more often than they should.
Clearly this would tend to indicate a test of greater power
than is warranted unless one tests also under the null hy-
pothesis and realises that the distributional assumptions
are breaking down. The significance level estimates were
performed with (at least) 50000 realisations, while the re-
sults for the non-Gaussian random variables were obtained
with 10000 realisations. Results are shown in Table 1, with
N = 64. We believe the results indicate the futility of at-
tempting to construct a general test with QZ(t) based on
a low value of T'. Note that, for each choice of t, the K-E
test performs well for some alternatives (when the choice
happens to correspond to values of the alternative’s cf that
are far from that of a Gaussian) but quite poorly for others
(when the converse is true). We do not believe it is possible
to specify a small number of ¢ values at which all alter-
natives will be detected with large power. If the alterna-
tive hypothesis is specified this approach may be warranted.
The results for the Qx methods show a much greater sta-
bility as well as overall performance improvement. We note
that Q% and QS tests have provided improved performance
for symmetrical and asymmetrical alternatives respectively.
An interesting result is the performance of the K? statis-
tic for the T'(5) data. We believe the reason for the com-
plete breakdown observed here may be that the test is based
only on third and fourth cumulant information and there-
fore cannot be truly called an omnibus test. Results for
other values of NV have been obtained and show the Qx
tests to be (at least) as consistent with respect to IV as the
other tests, but often better.

7. CONCLUSIONS

We conclude that we have devised and implemented a test
for Gaussianity based on the cf which resclves the problems
of implementation and performance that were associated
with previously proposed methods. Additionally, we have
shown the test to be a very powerful all-purpose test for
Gaussianity as compared to other available methods. Fur-
ther, we note that adaptions to the method to test for other
densities is a simple matter, and that enhancement of the
test for specified alternatives is also possible. Finally, the
extension of the methodology to the cases of non-identically
distributed and non-independent data remain as the goal of
future research.
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Figure 2: Realisation graph of the AKCFE.

([ Distn.” [| Q%(ty) | Qx(tx) [Q%(ta) [ Qx [ @x [ Qx [ x*| W[ K|
N(0,1) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
U(0,1) 62.3 99.0 94.4 87.3 | 88.5 7.5 || 30.5 97.3 90.1
X3 99.8 92.4 98.1 || 100.0 | 64.5 99.9 i 95.1 | 100.0 99.6
X3 50.6 36.9 47.5 65.1 | 17.0 75.0 || 25.8 82.1 63.1
L 41.3 10.7 45.0 70.7 | 72.1 14.8 || 29.5 45.9 57.1
K(1,1) 90.7 60.8 72.7 88.8 | 27.7 93.3 || 44.7 96.9 83.5
LN(0,1) 100.0 98.4 99.5 |f 100.0 | 94.1 | 100.0 |} 99.6 | 100.0 | 100.0
t2 82.0 57.4 84.0 944 | 949 33.3 || 723 87.8 91.0
T(5) 31.7 20.5 15.9 37.1 | 42.1 6.8 || 23.6 22.9 0.5
£(4,4) 6.3 17.3 17.1 99 | 11.1 7.3 5.9 13.1 5.8
T-U 4.3 10.6 9.6 6.0 6.0 4.7 5.5 74 3.3

Table 1: Percentage of realisations rejected for null hypothesis of Gaussianity at 5% level of significance.

'U: Uniform, L: Laplace, K: K-distribution, LN: Log-Normal, T: Tukey, T — U: Sum of three independent U(0,1) random
variables
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