CYCLIC DETECTION IN A NONWHITE GAUSSIAN NOISE
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ABSTRACT

This paper deals with detection of weak cyclostationary sig-
nals embedded in colored gaussian noise. We consider the
normalized correlation function of the noise to be known
and the noise power to be unknown. We propose a tempo-
ral structure of the single cycle detector which includes a
prewhitening filter. We compare performances of this detec-
tor to the classical radiometer and the modified radiometer.
The performances are quantified in terms of Receiver Oper-
ating Characteristics for two different noise power spectral
densities. We compute the theoretical deflection, this mea-
sure gives a means to choose the best cyclic frequency used
in the single cycle detector. We conclude that cyclic meth-
ods outperform radiometric methods when the noise and
the signal power spectral densities strongly overlap and for
a unknown noise power.

1. INTRODUCTION

The solution of weak random signal detection, when the
random signal is represented as a stationary process, leads
to the well known radiometer [1]. In many applications,
like communication or underwater acoustic, the cyclosta-
tionary model is more appropriate for modulated signals
(PAM, BPSK, MSK, ...) in order to exploit all the a priori
knowledge about the signal. So in the sequel, we suppose
that the signal is wide sense almost cyclostationary i.e. its
autocorrelation contains multiple additive periodicities, and
these periodicities are incommensurate.

Recent works have studied the detection of weak cyclo-
stationary signals embedded in a white noise [2], [3], [4]. Be-
cause the white noise assumption is often violated in prac-
tice, Gardner [5] has suggested a cyclic detector written
in the frequency domain, using only one cyclic frequency
and taking into account the noise Power Spectral Density
(PSD). The cyclic detector is called the single cycle (SC) in
the white noise case and prewhitened single cycle (PSC) in
the colored noise case.

In the present paper, we study in detail a time do-
main implementation of this detector and particularly the
effect of the prewhitening operation on the detection per-
formances. To do this, we assume an a priori knowledge
of the normalized noise correlation function except for the
noise power. More precisely, we model the noise as an au-
toregressive moving average (ARMA) process excited by an
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independent identically distributed gaussian sequence with
unknown variance.

We study the theoretical deflection of the cyclic detec-
tor versus all cyclic frequencies. So, we can choose the
cyclic frequency that maximizes this deflection. For this
one and others cyclic frequencies, we compare the perfor-
mances, via computer simulations, of the PSC detector
and the prewhitened modified radiometer detector (PMR) in
terms of Receiver Operating Characteristics (ROC) curves
for a BPSK signal. We particularly study the case of strong
overlap between noise and signal power spectral densities.

2. PROBLEM STATEMENT

The problem of detecting a random signal in additive noise
can be represented by the following hypotheses test :

Hy . x=z

Hi : x=s+42z @)
where x and z denote N-dimentionnal column vectors whose
components are samples of the received signal and noise.
The vector s denotes the signal to be detected, which is
modeled as a zero-mean almost cyclostationary real pro-
cess. The vector z denotes the stationary zero mean gaus-
sian noise, assumed to be statistically independent with the
vector s, described by its positive-definite symmetric covari-
ance matrix, R., such that R,~™! = C*C/o?, where C'is a
NxN urique invertible lower triangular matrix. The vector
z is related to n, also a gaussian vector with independent,
identically distributed components (of zero-mean and ¢?
variance), via the linear transformation :

z=C"'n (2)
Using relation (2), the detection problem (1) now becomes:

Ho
H,

PR

:§+n (3)

In (3), X is the transformed observation vector X = Cx and
§ = Cs is the transformed zero-mean signal vector which
covariance matrix is given by R; = CR,C".

This leads to the receiver structure (4), which is a prewhite-
ned version of the locally optimum detector (LOD’s) in the
independent case :

N

im=1

1 .
— 6,-,,,.;3-)12;(1,111) (4)
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Figure 1: Signal and noise Power Spectral Densities (PSD)
SNR=-7db (example 1)

where 6; 1, is the Kronecker delta and R;(i,m) is the i-mth
element of the covariance matrix of the transformed signal:

N
Ri(i,m) = E[sidm) = Y CisCmuR(k1)) ()

k=1

In the sequel, we suppose that N is sufficiently large (N —
00), thus, the matrix C becomes the impulse response ma-
trix of the inverse filter C(z) :

N-1
C(z) = Z Cvz™* (6)
k=0

3. CYCLIC DETECTORS

The almost cyclostationarity assumption allows us to ex-
press R.(k,1) in the Fourier-series form :

R.(k, 1) = Z R2(k — lyexp[jma(k +1)] (7)

where

L
Rf(r)d_li_f[‘li_{noo ﬁ; Z R,(r+m,m) exp[—j?wa(m+¥)]
m=-1L

is the cyclic autocorrelation function, and the sum « is, in
general, over integer multiples of fundamental frequencies
of cyclostationarity.

By substituting (7) and (5) in (4) under assumption (6) and
© assuming :

o coefficients Ci vanish for large values of k (which is
a valid assumption for stable filter);

s the sample size N greatly exceeds the largest lag cyclic
autocorrelation function (N » |rg.|) such that the
cyclic autocorrelation function R2(r) # 0;

e the sample size N greatly exceeds the largest period
of cyclostationarity of the signal s, (N > 1/amin);

2009

0.4 a3 -8.2 8.1 ] [ B} 0.2 a3 0.4 a5
Normuized Frequency

Figure 2: Signal and noise Power Spectral Densities (PSD)
SNR=-7db (example 2)

we obtain the following prewhitened multicycle (PMC) stat-

istic:
ZPMC ZZG (8)
N-1
gPMC Z Z R3(r)" [RE(r) = a0 N Re(r)5?]

a r=1-N

where X = C°Cx and RZ(r) is an estimate of the cyclic
autocorrelation function of the signal %X defined by :

N—|r}

R =5 3 iy expl=i2nali+1rl/2)]  (9)

i=1

where R.(r) is the autocorrelation of the impulse response
of the inverse filter defined by :

N-—jr|—1

1
Re(r) = > CkCiypry (10)
k=0

where % is an estimate of the parameter ¢° which is ap-
proximately the same under both hypotheses and is given

by :
a2 _ 1 Z-g
g = _ﬁ T (11)

The statistic (8) for & = 0 leads to the prewhitened modified
radiometer (PMR) which is expressed as :

N-1
ZPMR = ZPR_N 3" RY(r)R.(r)s’

r=1-N

(12)

where ZFR is the prewhitened radiometer evaluated when
the noise power is known.
Note that :

¢ The PMC detector cannot be implemented without
knowledge of the phase of the signal to be detected.
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Figure 3: Normalized deflection (example 1) via all the
cyclic frequencies for the BPSK signal ((0) : & = k/T., (#):
a=2f0+k/T., (x):a=-2fo+k/T. k€ Z).

A suboptimum structure can be used, referred to as
prewhitened single-cycle detector (PSC), which em-
ploys only one cyclic frequency contained in the signal
and then, takes the magnitude of the statistic.
Hyo
ZF5C =12°IS v (a#0) (13)
H,

e The corrective factor (the second term in (8)) due to
the estimation of the parameter o appears only for
a=0.

e According to the above remarks, the PSC detector
(a # 0) still remains the same when the noise power
is known or unknown. This remark is important to
understand the robustness of the cyclic detector in
comparison with the PMR detector ; the radiometric
method needs a good estimate of ¢ (11}, that is not
the case for the cyclic method.

4. DEFLECTION

The squared deflection D, which is 2 measure of the output
SNR, particularly appropriate in weak signal assumption,
is defined by :

|E(Z|H1) ~ B(Z|Ho)?

D(2) = ——3wzim)

(14)

The evaluation of the deflection for the statistic (4), as-
suming the noise parameter o2 to be known is :

N
1 Z .

1,7=1

For cyclostationary processes, under the same assumptions
used to obtain the statistic (8) we obtain the following ex-
pression :

N 12 2
D=ZD°=§F {/_ ,215?(f)l tlf} (16)
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Figure 4: Normalized deflection (example 2) via all the
cyclic frequencies for the BPSK signal ((0) : a = k/T,, (#):
a=2f0+k/T., (x):a=-2fo+k/T. k€2Z).

where S5 (f) is the cyclic spectrum of § defined as the dis-
crete Fourier transform of the cyclic autocorrelation func-
tion )

and 53(f)=CYf-a/2)C(f +a/2)5(f)  (17)

where C(f) is the discrete Fourier transform of the impulse
response of the inverse filter.

D is the PMC deflection except for a = 0. By consider-
ing the noise power to be known for the evaluation of (16),
D° corresponds to the PR deflection instead of the PMR
deflection.

Equation (17) shows the effect of filtering on cyclosta-
tionary processes. This linear time invariant operation can
modify, and even destroy cyclostationarity properties. How-
ever, the almost cyclostationary assumption (the autocor-
relation R,(k,m) contains multiple additive periodicities,
and these periodicities are incommensurate) allows us to
find cyclic frequencies such that the cyclic spectrum is not
identically zero (S§(f) # 0). The evaluation of the deflec-
tion will allow us to choose the cyclic frequency which maxi-
mizes D*. Notice that D is not exactly the PSC deflection
because of the modulus operator. However, Gardner has
shown that the deflection based on the complex detection
statistic (D"g is less than the deflection based on the mag-
nitude (DF°) for a sufficiently large sample size [4]. Thus,
D, is a reliably conservative measure of the PSC detector
and the evaluation of D® provides a convenient theoretical
means for choosing the best cyclic frequency.

5. SIMULATIONS

In order to compare the performances of PSC and PMR
detectors working in a nonwhite gaussian noise with an un-
known noise power, simulations have been carried out. The
signal to be detected is a BPSK signal embedded in an
auto-regressive process (AR).

The signal characteristics are : the time shift keying
T. = 8 (eight samples per keying interval) and the reduced
carrier frequency is fo = 0.21.
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Figure 5: ROC’s curves (example 1)

Two examples of auto-regressive (AR) noise processes
are considered :

Example 1 : The poles of the AR(2) noise process are at
0.9exp(+52x(0.21)) (figure 1).

Example 2 : The poles of the AR(4) noise process are at
0.7 exp(£727(0.21)) and 0.5exp(£72x(0.15)) (figure 2).

The noise power is randomly distributed according to
a normal distribution {(mean=y, variance=0.14%). The pa-
rameter u is fixed by the signal to noise ratio (SNR=-7db)
which is evaluated in the signal bandwidth.

We define the normalized deflection as :

o« _ D®

where D® can be deduced from (16) and DFR is the PR
deflection.

In figures 3 and 4, we plot the normalized deflection
versus all the cyclic frequencies of the BPSK signal. For
the two AR noise processes and the BPSK signal, we find
a = 1/T. or @ = 7/T, as the best cyclic frequencies (figures
3 and 4). Figures 5 and 6 plot ROC’s curves for sample size
N=512 (64 keying intervals are considered). We compare
four detectors for the two examples : the PSC with (o =
1/T.) the best cyclic frequency according to the deflection,
the PSC with (¢ = 2f5) the best cyclic frequency for a
white noise model [3], the PMR which is optimum in the
stationary signal model case, the PR which is optimum in
the stationary signal model and known noise power case.

In both examples of noise PSD, ROC’s curves illustrate
the superiority of the PSC with a = 1/T. over others de-
tectors.

From Figure 5, for a strong correlation between noise
samples and a strong overlap between noise and signal PSD,
we can conclude that :

PSC(a =1/T.) > PSC(a =2fs) > PRM > PR.
From Figure 6, for a larger bandwidth of the noise PSD, we
have :
PSC(a =1/T.) > PRM > PSC(a = 2fy) > PR.
From these results, we can draw several conclusions :
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Figure 6: ROC’s curves (example 2)

e The noise PSD interacts with the choice of the cyclic
frequency of the most powerful PSC detector.

¢ Deflection is a reliable means for choosing this cyclic
frequency.

¢ In our simulations, the PSC (a = 1/T.) gives better
performance than the expected PSC (a = 2fo).
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