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ABSTRACT

The performance of Page’s test for the detection of a
permanent change in distribution is reasonably well-
understood. However, there are few parallel results on
its application to the detection of a temporary (i.e.,
transient) change, and this is the paper’s subject. Specif-
ically, a lower bound on detectability is developed us-
ing a quantization approach; and a pair of approxima-
tions are presented, one based on a Brownian motion
analogy, which yields an upper bound in the Gaussian
case, and the other again on quantization. The corre-
spondence between these and simulation appears good
in both Gaussian and non-Gaussian cases with heavier
tail probability.

1. INTRODUCTION

We first define the operation of Page’s test [1]. With
{¥a} (n=1,2 ---) an iid log-likelihood ratio sequence,
define,

Z, =max{0, Z,_;+Y,}, (1)

with Zp > 0. In words, Z, is set to zero whenever it
tries to go less than zero. This operation is often called
regulation. A detection is declared the first time Z,
reaches or exceeds a threshold A, with “stopping time”

T = min{n: Z, > h}. (2)

Page’s test is most powerful (quickest) for the detection
of a change in distribution, and, its performance as so
applied is fairly well-understood (e.g. [2, 3]).

Page’s procedure is also frequently applied to the
detection of transient changes in distribution, for which
problem it also possesses some optimal properties [4];
however, its performance in this application is less well-
understood. Consider a Gaussian shift-in-mean tran-
sient whose strength (the distance between the means)
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varies as the inverse square root of the duration. Such
a transient has constant SNR, meaning that the per-
formance of a fixed-length test should be independent
of the duration, and one may expect similar behavior
from the Page’s procedure. However, according to fig-
ure 1, this is not the case: as the duration increases,
so does the detectability. It is apparent, therefore, that
intuition is not sufficient, and that analysis is necessary.

2. PERFORMANCE EVALUATION

Three approaches will be employed to evaluate the per-
formance of Page’s test applied for detecting a transient
signal.

2.1. The Lower bound on detectability

We give a lower bound by quantizing the innovation ¥,
with three levels. Consider

Pr{Y,=1} =
Pr{Y,=0} =
Pr{Yo=-1} = p (3)

where ¢ + r + p = 1. Then, if the test starts from zero
at n = 0, the characteristic function of T (as defined in
equation (2)) is as follows [5, 6]:

Ay = A

E{e—ij} = A:h(A_,_ — 1) n A;h(l — A_)

(4)

where

As = 1~ reiv 4+ [(1- re—jw)Z - 4pqe—2ju]1/2
= Ipe—7v .

(5)

The lower bound can be obtained by taking the in-
verse Fourier transform of equation (4).
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2.2. The Brownian Motion Approximation
—an Upper Bound in the Gaussian case

It can be seen that Page’s test statistic is similar to a
Brownian motion regulated at zero, defined as follows:
Let W; be a zero-mean unit-variance Wiener process
and let

Xi=Xo+ut+ oW, (6)
L; = max{0, —ogfétX,} )
Zg = Xg + Lg. (8)

In the case where the update of Page’s test is Gaus-
sian, with the same threshold being used, the detectabil-
ity of the Brownian motion is an upper bound of that
of Page’s test because Z; can cross the threshold in be-
tween sample times and can be raised more in between
sample times by the zero regulator than Z,.

The characteristic function of the time-to-detection

T =min{t: Z; > h} (9)

is known [7] if the Brownian motion has an initial value
Zo = Xo = 0 at time t = 0. Note that T is a positive
real number here while it only takes integer values in
the preceding section. However, the initial value of the
test for a transient is distributed the same as the steady
state of the test under the null hypothesis [8].

Via stochastic calculus, we found the characteristic
function of the stopping time T with arbitrary initial
value Zj:

E{e7*T} = —ﬁ(z}:’)) (10)

oe) = (/(8) i+ ) e 2

+ ( (£)" + 240 - g) e (VIEHTw )2,

To derive equation (10), let 4(-) denote a twice con-
tinuously differentiable function. Then (Z;) is a vari-
ation finite (VF) stochastic process. Similarly, e~7%*
can be regarded as a VF stochastic process, just with
zero randomness. Then we have

e~ IY(Z,) — e719%(2,) = _/t e 7 dy(2,)
0

—jw /t e 7YY(Z,)ds,  (11)
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Figure 1: The probability of detection of a Gaussian
shift-in-mean transient, with mean time between false
alarms of 10%.

where, of course, the integrals above are defined stochas-
tically. Since ¥(-) is twice continuously differentiable,
we can apply Ito’s formula [9] and get

’ 1 "
d¥(Z:) = oy (Z:)dW + Ea’«p (Z.)dt
)’ (Z2)dt + 9 (0)dL,. (12)
Substituting equation (12) into equation (11) and tak-

ing the expectation of both sides yields

Bleiut(2)} - w(Zo) = [ gt

{130°%"(2.) + ¥ (2,) - Gub(Z,)ds + ' (0)dL,)

+ 0B [ emseny (z,)am), (13)
Note that

t 0
B{[ e o4/ (Z)aW} = B{| iy (z)am} = 0
0 0 (14)
since [ e=7%49(Z,)dW is a local martingale.
Equation (13) is true for any twice continuously dif-
ferentiable function ¥(-). We want to find a 9(-) that
zeros the right hand side of equation (13), a sufficient
condition for which is

29 (2)+ w¥ (2,) - jup(Z) =0 (15)
$'(0)=0. (16)
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Solving the ordinary (non-stochastic) differential equa-
tion (15), subject to boundary condition (16), assuming
(£)? + 2jw # 0, yields

¥(z) = k{ (\/ (5)2 +2jw + S) V(8 1otz
+ (1 /(5)’ + 2w - S) e—(\/(_%'_)mu,:)g} (17)

where k is an arbitrary constant and can be set equal
to one. Substituting equation (17) into (13), and re-
placing ¢ with T (notice that Zr = h) results in equa-
tion (10). Again the detectability is obtained by taking
the inverse Fourier transform.

2.3. Continuous-Time Moment-Matching

In another approach, the discrete-time Page’s test pro-
cess is approximated by a continuous-time process in
which only positive and negative “jumps” of a single
magnitude are allowed. The probabilities

PT{X:.,.A: =Xgﬂ:d}
P'l"{ IXt+At - Xgl > d}

v At + o( At)
o(At) (18)

are determined, with positive quantities d and v4 cho-
sen to match moments with the Page’s test update un-
der the alternative hypothesis. L;, Z; and T are defined
the same as in equations (7), (8) and (9) respectively.
If the test starts from zero at t = 0, then (see [5})

E{e-ivT} — T+ — 7~
{ } 2 ey = 1)+ M (1 - o)
(19)
where [-] is the ceiling operation which is actually re-
moved for a better approximation to Page’s test, and

(jw+ vy +v)E/(jw+vs +v-) —duu
2v. ’

T+ =

(20)
It should be noticed that if d is infinitesimal, the con-
tinuous process becomes Brownian motion.

3. EXAMPLES

First, suppose that the innovations {¥,}3%, are #id
unit-variance Gaussian random variables with a —0.2
and 0.2 shift-in-mean under the null and alternative hy-
potheses respectively. Suppose the desired average dis-
tance between false alarms T for the Brownian motion
is 10* so that the average distance between false alarms
for the Page’s test is over 10%. Taking the derivative of

equation (10) with respect to (—jw) and setting w = 0,
we get

= o? 2u(h — Zy) _3mh 3wz
Tzﬁ(a—2+e o)L (21

Let T = 10%,u = —0.2,0 = 1 and Z; = 0 for sim-
plicity. Then the threshold solved from equation (21)
is approximately A = 17. Then the average distance
between false alarms, in which case the shift-in-mean
is —0.2, for the Page’s test is 1.5 x 10* according to
simulation. While the simulation result of the proba-
bility of detection, in which case the shift-in-mean is
0.2, is shown (the solid line) in figure 2 together with
its upper bound obtained through Brownian motion.
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Figure 2: The detectability of a Gaussian transient .

In order to get the p, ¢, and r in equation (3), the
innovation needs to be quantized. Suppose we quan-
tize the pdf under the null hypothesis with thresholds
+0.359. We will get p, = 0.4368, », = 0.2751 and
gn = 0.2881. Quantizing the pdf under the alternative
hypothesis with the same threshold yields the proba-
bilities p, = 0.2881, r, = 0.2751 and ¢, = 0.4368.

To find the threshold h needed in equation (4) meet-
ing the requirement of the mean time between false
alarms. First we take the derivative of equation (4)
with respect to (—jw) and set w = 0. We get

5 1 1_(Pn/9n)h _
T= 4n — Pn P'n./Qn -1 h] ) (22)

Therefore k can be solved for the desired T = 1.5 x
10%. Then with the k so obtained, we can get the
characteristic function of T under the alternative hy-
pothesis by substituting the p, g and r in equation (5)
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with p,, g, and r, respectively. Then we take the in-
verse Fourier transform numerically to get the prob-
abilities for the stopping time. Taking the cumula-
tive sum of these probabilities gives the probability of
detection which varies as the quantization thresholds
chosen. The thresholds that maximize the probability
of detection are +0.359. The corresponding tightest
lower bound of the probability of detection given by
the three-level quantizer is shown in figure 2 (the lower
dotted curve).

To moment-match Page’s test with a continuous
time process as presented in section 2.3 the shift-in-
mean equation,

(v —v-)d=p, (23)
and the variance equation,
(ve +v-)d* = 0%, (24)

have to be solved simultaneously after d is determined.
Heuristically, if positive solutions for v+ can be en-
sured, two standard deviation jumps is about right:

d=20+p. (25)

In this example, the solutions v, = 0.1488 and v.. =
0.0579 are substituted into equation (20), and the cor-
responding characteristic equation is obtained.

In each of the three cases, namely three-level quan-
tization, Brownian motion and continuous-time moment-
matching, we obtained the probability of detection via
the characteristic function of the stopping time. In the
three-level quantization case, the characteristic func-
tion is a discrete time Fourier transform, the inverse
transform of which is the probability point mass for
the time to detection T. While in the other two cases,
the characteristic function is a continuous time Fourier
transform, the inverse transform of which is the prob-
ability density function of 7.

Figure 3 corresponds to figure 2 except here a cell
average constant false alarm rate (CA-CFAR) test is in-
vestigated where heavy non-Gaussian probability tails
are involved.

4. CONCLUSION

The Brownian motion gives a relatively tight upper
bound in the Gaussian case. It also tends to be an
upper bound in non-Gaussian cases. The quantization
approach gives a genuine lower bound in any case. It
usually becomes less tight in non-Gaussian cases with
heavier tail probability. The moment-matching is very
accurate, even in non-Gaussian cases. In most cases of
interest, using the three computationally inexpensive
approaches together, a confident, accurate assessment
of the performance can be obtained.
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Figure 3: This is the same as figure (2) except that the
test is for a CA-CFAR transient.
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