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Abstract: Blind channel identification has been a
popular research subject in recent years. In this pa-
per, we introduce the concept of knowledge-based blind
channel identification. By relying on known infor-
mation such as the pulse shaping filter and the anti-
aliasing filter responses, the performance of channel
identification and equalization can be significantly en-
hanced in digital communication systems. We present
two simple methods: one in time-domain and one in
frequency domain. Our simulation results will demon-
strate the performance of these two approaches.

1 Introduction

In many data communication systems such as the
digital mobile systems and digital HDTV systems,
data signals are often transmitted through unknown
channels which may introduce severe linear distortion.
In order to improve the system performance, it is im-
portant for the receiver to remove the channel dis-
tortion through equalization or sequence estimation.
Because the available channel input training sequence
may be too short or even non-existent for channel iden-
tification, blind channel identification can play useful
roles in these systems.

The algorithm by Tong, Xu, and Kailath [1], known
as the TXK algorithm is one of the first known meth-
ods for fractionally sampled channel identification.
Several modifications of the TXK method and other
algorithms have since been proposed with good perfor-
mance (see, e.g., [2]). However, most of these methods
are designed to identify the entire discrete channel in-
cluding the pulse-shaping and receiver filters. In prac-
tice, the overall channel is not completely unknown. It
is typical that the only unknown part of the channel
is the multipath. The focus of this paper is to explore
the knowledge-based channel identification when part
of the overall channel is known. Our results will show
that based on the known pulse-shaping and receiver
filters, channel identification can be significantly sim-
plified with improved performance.

2 Problem Formulation

A typical QAM (quadrature amplitude modulated)
data communication system can be simplified into a
baseband representation. Given that the channel is
linear and causal with impulse response h(t), its in-
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put/output relation can be written as

:l:(t) = f: skh(t—kT—to)+w(t), ar € A, (2.1)

k=-—c0

where T is the symbol baud period. The noise w(t) is
stationary and independent of channel input sg, but
not necessarily Gaussian. Note that h(t) = c(t) ®p(t)
is the “composite” channel impulse response that in-
cludes pulse shaping filter p(t) and the channel impulse
response c(t).

Let the sampling interval be A = T//p. The over-
sampled discrete signals are

z; 2 2(iA), h[i] 2 A(iA) and w; = w(Eid).
(2.2)
Suppose h(t) has finite support [0,T}), which spans
mp + 1 integer periods. Defining the following vectors

x[k] £ [zrp Tipt1 Zep+p-1
T(k-1)p T(k-1)p+1 zk?'MP‘H]I
s[k] = [sk sk-1 Sk—mo-M+1]’
wik] = (Wep Wkp41 Whp-Mp+1]
hi 2 [ hlip] Alip+1] hlip+p—1] 7,

we can form a Mp x (mg + M) block Toeplitz matrix

ho h; h,, 0 ... O
H—|0 ho hi ... hm :
0 ... 0 hy h; ... hy

(2.3)
Consequently the channel output covariance matrix
can be written as

Rx = HR,HY + 21, (2.4)

given the covariance matrix R, = E{s[k]s[k]¥
and white and zero mean noise w with R, =
E{w[klw[k}*} =02 1.

Our objective is to identify the channel H from Ex
under the identifiability condition that both H and R,
are full-rank.
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3 Main Results
3.1 Subspace Method
Through eigenvalue decomposition, we have
[Us Un]¥Rx[Us Un]= A = diag(c?,03,...,0%,)

Because HH¥ has rank mg + M, Ug has mo + M
dimensions and spans the signal subspace while Un
spans the noise subspace

Un =[ Umo+m+1 UmotM+2 Ump |.

It is apparent that

_1
H = U,diag(01,02,..,0mo+m)V Rs ?,

where V is an unknown orthonormal matrix. As a
result of the subspace separation,

Un®H =0 (3.1)

It has been shown [2] that the full-rank channel matrix
H can be uniquely determined by solving the above
equations subject to the constraint that H is block
Toeplitz.

3.2 Knowledge Based Subspace Method

The identification task can be simplified by only
identifying the unknown channel c¢(t) based on the
known filter response p(t) instead of identifying the
entire h(t). Let

c[i] = c(iA), =0, 1, ..., mp—1; (3.2)

pli] 2 p(ia), i=0, 1, ..., ng (3.3)

i

hli] =Y i — k]p[k]- (3.4)

k=0
¢ 2 [ clip] clip+1] cip+p—-1]. (3.5)
Denote
(po O 0
1 Do 0
A . R
P o, 0 . po (3.6)
0 P, -
| 0 0 j
and
A
C = [ co €1 Cmy -1 | (3.7)

we have

H = [h) b} n, ] =»c. (3.8)

If we partition
of)
o
Ui=| , wWispx1, j=1,2 ..., M,
(3.9)
it is then evident that

UFH = H'Uu; = C'P'U; (3.10)
where
u(li) ugi) ugf) 0 ... 0
U = 0 u(li) u(;) AN ug‘? .0
0 ... 0 u(li) ugi) e u(;)

Thus, we can identify the channel C' by minimizing

Mp

J(C)=CcHPp¥ ( > u,-uff) PC;  (3.11)
t=mo+M+1

To avoid the trivial all zero solution, we con-

sider a quadratic power constraint [[H|J? =

E{|z:|*}/E{|sx|?}. The solution is the minimum

eigenvector of Hx.

Since the pulse shaping p(t) is known a prior, we
only need to minimize the cost function with respect to
a smaller vector C. In practice, the channel ¢(t) tends
to be multipath with a delay less than one symbol in
mobile communication systems. This can significantly
simplify the minimization procedure especially when
the pulse length is rather long in a low bandwidth
channel.

3.3 Frequency Domain Phase Recovery

It is well known that the magnitude of the channel
frequency response can be obtained from the power
spectrum density of the channel output. Once the
amplitude is derived, the more important task is to
extract the phase information. Relying on the works
in [4], we present a frequency domain knowledge-based
method.

The correlation function of z; is defined as

Ri[n+ m,n] = E{Znyme, }- (3.12)
Since w; and s; are independent, z; is a cyclostation-
ary process with period p. Although we assumed that
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w; is white, our basic derivation can be easily extended
(see Gardner [3]) to colored stationary noises.

The cyclic correlation function of discrete process
z; is defined as

RUP)[m] & Z R:[n+m,nle '™ g= —, (3.13)

for l € Z. The cyclic spectrum of z; is hence obtained
as

Sl 2 S RIO[mlemim  (3.14)

m=—0o0

= o?H(w)H*(w - 1B) + o2 8[1).

Define 9(w) as the phase of s )[w] and ¢,(w) as
the phase of H(jw). We have

$r(w) — pn(w — B) = P(w). (3.15)

Recall that the overall channel H(w) = P(w)C(w) con-
tains a known part P(w) and an unknown part C(w).
Thus the channel phase

$a(w) = 6p(w) + dc(w)

also contains a known phase ¢,(w) and an unknown
phase ¢.(w). Defining

e(w) £ $(w) + dp(w — B) — ¢p(w),
our goal is to determine ¢.(w) from
¢c(w) - ¢c(w - ,3) = ")bc(w)-

Since both ¢.(w) and %.(w) are periodic with pe-
riod 27, we can expand them into Fourier series

(3.16)

$e(w) = Z ¢n exp(jnw) (3.17)
Ye(w) = Z ¥ exp(jnw). (3.18)

n=-—00

Since {exp(jnw)} form an orthogonal basis, by substi-
tuting both (3.17) and (3.18) into (3.16), we have

én(1 — exp(inB)) = ¥n, (3.19)

which can be used to get ¢, for n # kp. Unfortunately,
no information about ¢, for n = kp is contained in the
cyclic spectra, which indicate the limitation of using
cyclostationarity to identify the unknown channel.

To remove the phase ambiguity without any prior
information on the channel, the phase ¢(w) is deter-
mined through

min |¢(w)|?, subject to @n(1 — exp(§nB)) = Yn.

Based on (3.19) and the orthogonal basis, the opti-
mum solution is simply

by = { Yn(1 —exp(inf))~, n# kp;
n 0,

n = kp.

Since the missing information ¢, is unknown,
this simple approximation naturally gives arise to
the phase distortion. By using known information
¢p(w), the missing information becomes less signif-
icant. Moreover, our solution only requires an un-
wrapped phase ¥.(w), which is a much easier task
compared to the unwrapping of ¥(w).

(3.20)

4 Simulation Results

A. Modified Subspace Method

We consider a raised-cosine pulse p(t) limited in
13T with rolloff factor 0.11 and a two ray multipath
channel

c(t) = 6(t) — 0.76(t — 0.45T").

The data input signal isi.i.d. BPSK. The SNR is 30dB
and p = 3. Results from 20 independent trials of the
subspace method and the modified subspace methods
are shown in Figure 1. The normalized MSE of the
identified channel impulse response is also shown in
Figure 2 for different data lengths. The knowledge-
based method clearly outperforms the original sub-
space approach.

B. Frequency Domain Method

Let p(t) be limited in 67. The data input signal is
i.i.d. 4-level PAM. The data length is 256 and p = 3.
The two ray channel is

cft) = 8(t) — 0.95( — 0.337).

Under SNR=20dB, results from 20 independent trials
of the subspace method and the modified subspace
methods were shown in Figure 3. The normalized

MSE of the identified channel impulse response is also
shown for different SNR levels.

5 Conclusions

We present a knowledge-based subspace algo-
rithm for channel identification. We present also a
knowledge-based frequency domain approach for chan-
nel phase recovery. Both algorithms significantly sim-
plify existing methods that ignore the known system
response. The knowledge-based algorithms result in
improved identification performance as shown in our
simulation results.
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Figure 1: Channel identification from 256 data sym-

bols using the subspace method (top) and the modified
method (bottom).
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Figure 2: Comparison of normalize MSE.
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Figure 3: Frequency domain identification.
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