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ABSTRACT

New methods for parameter estimation and blind sys-
tem identification for impulsive signal environments are
presented. The data are modeled as stable processes.
First, methods for estimating the parameters (charac-
teristic exponent and dispersion) of a symrmetric stable
distribution are presented. The fractional lower-order
moments, both positive and negative order, and their
applications are introduced. Then a new algorithm for
blind channel identification based on fractional lower-
order moments is proposed. The Alpha-Spectrum, a
spectral representation for impulsive environments, is
developed. Conditions for blind identifiability of non-
minimum phase FIR channels are established using the
properties of the Alpha-Spectrum.

1. INTRODUCTION

The statistical signal processing framework is incom-
plete without the study of a-stable (0 < o < 2) distri-
butions. They are the only class of distributions that
can be the limit distributions for sums of i.i.d random
variables (Generalized Central Limit Theorem). Fa-
miliar members of the family are Gaussian (¢ = 2)
and Cauchy (& = 1) distributions. Many signal/noise
processes are impulsive in nature and can be best mod-
eled as a-stable processes [1]. Unlike most statistical
models, the a-stable distributions (except Gaussian)
have infinite second- or higher-order moments. An
alternative tool is the fractional lower-order moment
(FLOM). It is known that the p** order FLOM for a
symmetric a-stable (Sa.S ) random variable is finite
for 0 < p < o [2]. While most blind identification al-
gorithms based on polyspectra [3] fail in the presence
of outliers, the FLOMSs are the appropriate tools for
analysis [4]. In Sec.2, the FLOMs (both positive and
negative order) are applied to parameter estimation; in
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Sec.3, the FLOMs are used to develop a spectral repre-
sentation for Sa.S processes: the a-Spectrum . Using
the properties the a-Spectrum of We show that any
FIR channel (mixed-phase with unknown order) driven
by white SaS (a > 1) processes can be identified from
output measurements only.

2. SaS PARAMETER ESTIMATION

The most important parameters for a SaS process are
the characteristic exponent « and the dispersion v. We
present new estimation methods of these parameters
using FLOMs.

2.1. Fractional Negative-Order Moments

We show that a SaS random variable X also has finite
fractional negative-order moments. A unified formula
is:

E(]X[?) = Ci(p,a)y5, =1 <p<a. (1)
pH+ip bl -
where Ci(p,a) = Z—LI;(—L)—F(—i. X is a real SaS

ayml(~£)
random variable. Eq.(1) can be used for estimation of
o and y. More specifically, « is obtained by solving:
p7r) _ 2 tan(pm/2)

sine(o) = ZrE(IXP)E(XT7)

,0 < p < min(a, 1).

(2)

v is obtained by Eq.(1) afterwards.

2.2. Parameter Estimation with log|SaS]|

Since the pdf f(z) of a Sa.S random variable is bounded
at z =0, let Y = log|X]|, then E(|X|P) = E(e?Y). By
the property of the moment-generating function,
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E(Y*) = =
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where C, is the Euler constant. All the moments of Y
are finite and from the second-order and above, only
involve «. Eq.(4) provides a simple parameter esti-
mation method. If the samples are not i.i.d, ergod-
icity is needed to apply the above method. Notice
that (i) a SaS random variable U has finite p-th order
moments E(|U|P) in the neighborhood of p = 0, ()
n jointly SaS random variables Uy, Us, - - - U, have fi-
nite joint moments E(|Uy |P*|U3[P? - - -|Un|P") of orders
P1,P2, - - Pn in the neighborhood of p; = 0,p2 =0, -- -,
pn = 0 [5]. We can prove that when U is a SaS moving
average process, its corresponding log|SaS| random
process V = log(|U]) is stationary as well as mean-
and correlation-ergodic [6].

2.3. Iterative Parameter Estimation Method

To increase estimation accuracy while maintain mem-
ory efficiency, an iterative method is proposed. After
observing the k** block of data (M samples per block),
we update a(k) and v, (k) from a(k — 1) and v, (k — 1)
by:

w2 1 1 k-1 1
T mt) = w [ce(a(k_l)—l)—Avg(kH
logy (k—1)]* k—1x2 1 Var(k)
a(k—1) ] Felae-n _)
(5)

and,

logyy (k) _ k-1 !

o) = K [C"’(a(k—l)_l)Jr

where Avg(k) and Var(k) are the average and stan-
dard deviation of k** block of data log(|Ya|). Y, is a
M A process. Monte-Carlo simulation results (Fig.(1))
clearly demonstrate the effectiveness of the algorithm.

3. BLIND CHANNEL IDENTIFICATION

We present a robust blind channel identification algo-
rithm based on a new frequency domain representation
of the output covariation: the a-Spectrum. In the fol-
lowing, the input is assumed to be standard SaS with
knouwn a.
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Figure 1: Iterative estimator for a, v, with 200 blocks,
100 samples per block. FIR channel: Y, = X, +
0.5Xn-1 —1.3X,-2+0.7X,,_3. (a). Average of & —
1.5024 (true value (dotted) o = 1.5). (b). Standard
deviation of & — 0.0289. (c). Average of v, — 3.4317
(true value (dotted) v, = 3.4215). (d). Standard devi-
ation of v, — 0.1316.

3.1. Time Domain Covariation Approach

The channel output covariation is related to the im-
pulse response coefficients by [4]:

20 Ay lhiwl® G=0,1,-g
Yn)Yn il = ‘—0 h’+' Chall T
[ +J] { E‘H‘J h‘_—J_lh la J = _1) e —q.
(7)
The covariation is estimated by [7]:
E(XY <p~1>)
[X,Y]a TE(Yp) (8)
where
<-1> _ | Y[~y Y: complex
Y { Y [P~ 1sign(Y) Y: real, ©)

A least squares method fails to solve Eq.(7) due to the
existence of local minima. For M A(1) and M A(2) pro-
cesses, there are closed form solutions for Eq.(7). For
example, for M A(2) process (assuming hq > 0):

hO = ([Yn;Yn-HZ]a . [YnaYn 2]<1 a>) h D¢ { -r'L 2
(10)
¥aYaoile _ [YaYaiile
hy = 22 ho . (11)

1= WaVo-2le _ (Yo Ynizla
h3 h3
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hy = [Yn, Yacola - bS5, (12)
A more general, closed form solution for M A(q),q > 2
is unknown. Note that the error propagation in com-
puting the mid-index coefficients is severe with this ap-
proach.

3.2. The a-Spectrum

Consider the generalized form of the output covaria-
tion: [Y,, Wala, where W, = f=_q a;Y,_i, and q;
are arbitrary real or complex coefficients. Hence,

q q
[Yo, Wala = D he(d_arih)<e™'>, (13)
k=0 =0
where the pseudo-linearity property of the covariation
was used, l.e.,

[aXm) bXn.]o: = ab<a_1>6(m - Tl)‘)’z, (14)

where X, X, are i.1.d Sa.S random variables with dis-
persion v, and d(-) is the Kronecker function. a,b are
real or complexr constants. Since the choice of a; are
arbitrary, let a; = 2%, Vz € C,z # 0. Then Eq.(13)
becomes:

1

Sal2) £ [Yn, Wa(2)]a = A<ty (#() <,
~ (15)
where Wy, (z) = Z;:‘iq Y,_;z*, which is the windowed

z-transform of the channel output Y,, and H(z) =
S _ohnz™" is the z-transform of the filter. Eq.(15)
is of fundamental importance. We name S,(z)
as the a-Spectrum . Given the measurement of a-
Spectrum , we can identify both the magnitude and
phase responses of the channel. More specifically, to
identify the channel magnitude response, let [z] = 1,
then |H(e/¥)| = (Sa(e/*))=; to identify the channel

phase response, taking logarithm of both sides of Eq.(15):

log S (2) log |Sq(2)] +j\P(z) »
= log |H(r1"°“e]“’)| + (a.— 1) log |H (re’)|
+ JH{e(r' ) — @(re’)}, (16)

where |H (re’“)| and ®(re’“) are the channel magni-
tude and phase responses evaluated on a circle of radius
7, |S«(z)| and ¥(z) are the magnitude and phase of a-
Spectrum, respectively. It is well known [3] for any FIR
channel: H(z) = Aoz~ [T, (1—a;z= ) [T22,(1 - b;2),
where Ag is the constant gain, d is the constant time
delay, {a;, |a;| < 1} and {1/¥;, [b;] < 1} are zeros inside
and outside the unit circle,respectively. In general, d
and the sign of Ag are known a prior. And:

. 0, Am)p—m (m) pm
log |H (rei*)| = — Z AmMpm™m 4 By

m=1

— cos(mw)

+ log(Ap) (17

) X Alm)p-m _ p(m),m
&(re!*) = Z . - - sin(mw), (18)

m=1

where
L,

L,
A =3 "ar; B =S e (19)
i=1 i=1
with the region of convergence (ROC): max;{|a;i|} <
2| < ming{1/]b:]}. A(m);B(m) and A(m);B(m) deter-
mine the magnitude and phase responses of the chan-
nel, respectively. Substituting Egs. (17) and (18) to
Eq.(16), to get:

o~ Ay (r) + B™pm (L)

log | Sy (re?®)| :—Z - cos(mw)
+ alog(Ao) (20)
. @AMy (r) — By (L)
U(rel¥) = Z A (r) mB () sin(mw),
= (21)

where g, (r) = r™(@D + (@ = 1)r~™ and vu(r) =
rm(e=1)_p~m with ROC: max;{|a;, |6/ (*"V} < r <
min; {1/]b;, (1/]a:])/(>~D}. Multiplying both sides of
Eq.(20) by cos(nw), n > 1, and integrating with respect
to w, using the orthogonality of the trigonometric func-
tion, we have:

A(n)/in (r)+ B(n)l‘N(%)

2
.__"n

/ log | S« (re?®)| cos(nw)dw =
0

(22)
Replacing r by 1 in Eq.(22) and then subtracting, we
have:

Alr) _ B(n) %fow log %i%;%)llcos(nw)dw

n pn(r) = pin(3)

(23)

Similarly, through the phase of the a-Spectrum: ¥(re/*),
we have:

A — ) 2 T (F(red”) + ¥(Lel?)) sin(nw)dw

n - va(r) +va(3)

(24)
Due to phase wrapping ambiguity associated with Eq.(24),
Eq.(23) should be used instead.
It is not surprising that we can extract the chan-
nel phase information from the magnitude of the a-
Spectrum. In fact, it is not difficult to get:

Aln) _ g(») B %fow logleﬂ(%l)chos(nw)dw
= , T#£ 1.
n Pt — p—n
(25)
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i.e., we can extract the channel phase response from
its magnitude response evaluated on two circles with
reciprocal radii.

Since S,(e’“) has been evaluated when the chan-
nel magnitude response was estimated, Eq.(23) can be
further simplified as:

Aln) _ B(n) 92 /T )
Tl (Cn(r) log|Sa(e?™)l

—1n (r) log | Sa(re’)]) cos(nw)dw, (26)
where
Gl = cosh(n(a — 1)logr) + (a — 1) cosh(nlog r)
" sinh(n(a — 1) logr) — (a — 1) sinh(nlogr)’
m(r) = -

sinh(n(a — 1)logr) — (o — 1) sinh(nlogr)’

In conclusion, we can recover the channel magnitude
response by evaluating So(z) on the unit circle, and
then recover the channel phase response by using addi-
tional information of S, (z) evaluated on another circle
within ROC.

3.3. Simulation Results

The FLOM covariation estimator (Eq.(8)) for the a-
Spectrum is applicable if and only if all the random
variables are real or ¢sotropic complex. When the in-
put X is white isotropic complex Sa.S process, then
any finite linear combination with real or complex co-
efficients of X,, is also isotropic complex SaS random
variable, and thus the FLOM estimator applies. Fig.(2)
shows simulation results of blind identification of the
channel magnitude and phase responses. 500,000 sam-
ples were collected in each of the 20 realizations and
p = 0.3 in the FLOM estimator. ! When the input
is real SaS process, an appropriate estimator for a-
Spectrum S, (z) (the covariation of a real SaS random
variable with a complex one) is yet to be found.
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