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ABSTRACT

Under certain conditions on the equalizer length and on the
channel dynamics, temporal or spatial diversity allows one
to achieve blind equalization perfectly by means of second-
order statistics only. Loss of channel disparity causes per-
fect equalization to no longer be achievable. The achiev-
able channel-equalizer combination then depends only on the
part of the multichannel transfer function lacking disparity.
We show that the Fractionally Spaced Equalizer adapted by
the Constant Modulus Algorithm (FSE-CMA) still achieves
“reasonable” equalization. Its performance equals that of
the non-fractional CMA, with a slightly shorter baud-length
equalizer than the FSE, applied to the part of the channel
lacking disparity.

Keywords: fractionally spaced equalization, multichan-
nel system identification, adaptive blind equalization.

1. INTRODUCTION

Blind equalization is a crucial topic for digital communica-
tions where the distortion in the observed signal results pre-
dominantly from Inter-Symbol Interference (ISI) of the un-
known (white, non gaussian) input sequence, (s(n)}. Most
linear blind equalization algorithms are performed either by
channel identification, e.g., via cumulant matching techniques
(1)) followed by Wiener filtering to recover the data, or di-
rectly by an adaptive Bussgang algorithm ([2]).

Digital communication systems use temporal diversity,
e.g., oversampling, in order to perform time and phase re-
covery. Oversampling results in so-called fractionally spaced
data, so that the equalizers they drive are called Fraction-
ally Spaced Equalizers (FSEs), see [3]. However, very few
studies have been dedicated to the FSEs. Recent results in
multichannel identification lead to a better understanding of
FSEs based on a multichannel representation of the equal-
ization problem induced by spatial diversity (e.g., using a
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sensor array). The communication system with temporal or
spatial diversity can be seen as a multichannel transfer func-
tion with 1-input and L-outputs driven by (s(n)), ([4]). Its
L entries, ck(z), k =1, .., L, are assumed to have Finite Im-
pulse Response (FIR) transfer functions. The equalizer is
then a L-input/l-output filter, the FIR entries of which are
denoted ex(z), k = 1,.., L. The global system is represented
in Figure 1.

c1(z) e1(z)

+ ri(n) »

3(n) D — y(n)

CL(Z) = rp(n) - eL(z)

Figure 1: 1-input/L-output Channel, Fractionally Spaced
Equalizer

Then, linear equalization consists of pseudo-inverting the
multichannel transfer function, or in other terms solving

c1(z)
(e1(2),...,er(z)) =z

cr(z)

where v is a delay. Recent studies have shown that, under
some conditions on the degree of the ex(z) and on disparity
between the subchannels, perfect identification/equalization
is achievable ([4], [5], [6], [7], [9])-

In this paper, we focus on the case where the dispar-
ity condition on the subchannels is no longer met. We show
that without enough disparity between the subchannel trans-
fer functions, identification/equalization methods presuming
perfect equalization conditions may fail. Nevertheless, the
Constant Modulus Algorithm for FSE (FSE-CMA, [9]) is still
able to equalize reasonably, even for non-constant modulus
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input signals. Moreover, in this paper, its asymptotic perfor-
mance is shown to depend only on the part of the multichan-
nel transfer function lacking disparity. The performance is
then shown to be limited by that of non-fractionally spaced
CMA applied to the disparity lacking part of the multichan-
nel. Still, the ISI due to the disparity part of the multi-
channel is perfectly removed, resulting in better performance
than non-fractionally spaced CMA applied to any one of the
single T-spaced subchannels.

Organization:
The conditions for perfect equalization are recalled in Section
2. Section 3 contains the description of the best achievable
equalization when loss of disparity occurs. In Section 4, the
asymptotic properties of the FSE-CMA are studied and il-
lustrated by numerical simulations as striving for its best
achievable equalizer setting in the absence of channel noise.

2. PERFECT EQUALIZATION

For sake of simplicity, the oversampling factor I is from now
on chosen equal to 2.

From the propagation model of Figure 1, one can repre-
sent the global (channel + equalizer) transfer function as

h(z) = c1(z)es(2) + ca(2)ea(2) (1)

where ck(z) kK = 1,2 and ex(z) k = 1,2 are respectively
degree Q and degree (N/2 — 1) FIR filters. (1) is equivalent
to:

h=c'¢ (2)
where the entries of & are the coefficients of h(z), and the
entries of ¢ are the coefficients of e;(z) and ez(z). C is the

N x (Q+ N/2) convolution matriz defined by the coefficients
of ¢1(z) and c3(z) as:

[ 1(0) c1(Q) 0 0
0 ¢1(0) . c1(Q) 0
C= 0 0 ¢1(0) c1(Q)
2(0) ca(Q) 0 0
Y 2(0) . c2(Q) 0
| o 0 c2(0) ¢2(Q) |

The convolution matrix C is a Sylvester matrix, the alge-
braic properties of which have been studied, resulting in the
following results.

Lemma 1 [4]

If the equalizer total length N is greater or equal to 2Q @Q
being the mazimum degree of ck(z)), the rank of the N x
(N/2+4+Q) Sylvester matriz C is equal to N/24+Q — Z,, where
Zo is the number of common zeros between the subchannels.

Lemma 2 (5], [4]

If N > 2Q, the multichannel is identifiable if the cx(z) have
no common zero. Under these “length and zero conditions”,
there exist (e1(2), e2(2)) with degree N/2 — 1, inverting the
multichannel.

Consequently, under the length and zero conditions, any
global transfer function h(z) of degree N/2+Q —1is achiev-
able. In particular, any pure delay z=* (where v =0, ..., (N/2+
@ — 1)) that performs perfect equalization can be met.

In fact, the previous conditions result in the multichan-
nel &z) = (c1(z),c2(z)) 7 being minimum phase, even if each
subchannel transfer function is not ([6]). Thus, methods us-
ing second order statistics only have been proposed, resulting
in very good performance, [4]-[6]. Adaptive algorithms also
benefit from C being full column-rank. Under the length and
zero conditions, the FSE-CMA cost-function minima are all
global and achieve perfect equalization, [7], [8], [9].

3. LOSS OF CHANNEL DISPARITY

Channel:

We consider now the case where the length condition (N >

2Q) is still valid, but where the subchannels have common

zero(s). The multichannel transfer function can be factored

as &(z) = ( il Ezg ) co(z), where ¢,(z) and c,(z) are prime
S

(i.e., no common zeros), and where co(z) contains the com-

mon zero(s) of the multichannel.

In terms of the channel convolution matrix, Lemma 1
implies that the range of C* dimension is (N/2 + Q — Zo)
where Z; is the number of zeros of co(z). It should be no-
ticed that impulse responses associated to pure delays may
no longer belong to this range, and thus that they may not
be achievable.

Achievable Equalization:

The combined channel-equalizer transfer function can be writ-
ten as

h(z) = co(2)(ar(2)er(2) + g (2)e2(2)) = co(2)e(2)  (3)

A FSE applied to a multichannel lacking disparity can also
be viewed as the channel transfer function co(z) equalized by
ez} = ¢, (2)e1(z) + ¢y (2)e2(z), where ¢, (2) and ¢,(2) are of
degree Q — Zo, and N/2 —1 is the degree of e1(z) and ez(z).
If N/2 > Q - Zo, any scalar (N/2 + Q — Zy — 1)-degree
polynomial e(z) is achievable, so that the equalization prob-
lem is equivalent to the non-fractionally spaced equalization
of co(z) by a (N/2+ Q — Zo — 1)-degree transfer function.
Thus, one may think of choosing e(z) so to equalize as well
as possible the a priori mixed phase co(z).

More precisely, solving (3) to equal a pure delay implies
inverting co(z) which is not perfectly achievable with a fi-
nite length equalizer. This suggests that the second order
statistics based methods ([4]-[6]) proposed to solve the multi-
channel equalization problem can no longer be used. In fact,
since the part of the subchannel with disparity is minimum
phase, the multichannel transfer function remains minimum
phase if and only if co(z) is minimum phase. Consequently, if
co(2) is mixed phase, so is the multichannel, so that methods
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based on second order statistics can not provide an accept-
able answer. The degrees of the different transfer functions
being unknown, identification/equalization techniques based
on cumulant-matching may be difficult to apply in order to
achieve a “good” equalization. We propose to study a partic-
ular Bussgang algorithm, CMA [10] applied to fractionally
spaced data (FSE-CMA), in order to equalize ¢o(z) and to
benefit from the existing multichannel disparity simultane-
ously.

4. FSE-CMA
The FSE-CMA can be expressed as
ex(n + 1) = ex(n) + py(n)(r2 = y*(n)) Re(n)

where y(n) = 3, , ex(n)T Rx(n) with ex(n) the vector
which entries are the coefficients of ex(z) at the iteration =,
and with the regressor vector of the observation at the output
of the k** subchannel defined as Rx(n) = (r&(n),...,rx(n —
N/2-Q+1)".

Asymptotic Behavior:

In this paragraph, we show how the asymptotic behavior of
the FSE-CMA, in terms of its cost-function, is related to
that of the non-fractionally spaced CMA for the part of the
multichannel without disparity.

Proposal 1 Consider a 2-channel transfer function of de-
gree Q with Zy common zero(s). The minima of the FSE-
CMA cost-function (for length N equalizers, with N/2 >
Q — Zo) are associated with those of the non-fractional CMA
cost-function (for length N/2 + Q — Z, equalizers) applied
on the (degree Zo ) part of the multichannel transfer function
lacking disparity.

Proof:

Let e(2) be any (N/2 + Q — Zo — 1)-degree polynomial, we
know that there exist (N/2 — 1)-degree filters ex(z) k = 1,2
such as e(z) = (c;(2)e1(2) + ¢,(2)e2(z). Writing the global
transfer function as h(z) = co(2)e(2) = c1(2)e1(z)+c2(2)e2(z2),
the cost-function of the regular CMA as a function of e(z)
is equal to the FSE-CMA cost-function with the variable
{e1(2),e2(z)). This is due to both cost-functions being equal
to E[(rz — y*(n))*] with y(n) the output of h(z) driven by
s(n). A

Studies of the non-fractionally spaced CMA show that,
given a “long enough” equalizer and a suitable initialization,
a non-minimum phase channel can be effectively inverted,
see for example [11]. We will not discuss here the initializa-
tion issue and the eventual existence of local minima, since
they are strictly related to the non-fractionally spaced CMA
with finite length equalizers, on which studies exist, [11] for
example.

In the case of a global channel-equalizer transfer function
described by (3), the FSE-CMA cost-function extrema are

given by the following equation:
Co A(R)h =0, with A(k) = (3kT h—p)I — (3 - p)diag(kh")

where b = Coe, e is any (N/2+Q ~ Zo)-length vector and Co
is the (N/2+ Q — Zo) x (N/2+ Q) convolution matrix asso-
ciated to co(z). The classification of the extrema is analysed
in [12].

Recall that the non-fractional equalization by CMA per-
formance depends mainly on the distance between the zeros
of the channel transfer function and the unit circle. A deep
null in the channel frequency response correspohding to ze-
ros of co(z) close to the unit circle makes the equalization
task infeasable. It is important to notice that, in the absence
of noise, the equalizer abilities do not depend on the location
of zeros of ¢, (z) and ¢,(z), however close they are to the unit
circle.

However, as in the perfect equalization case ([9]), the
gain in performance compared to the non-fractional CMA
is somewhat offset by the robustness concerns due to non-
uniqueness of the optimal settings. A better understanding
of this phenomenon is given by the algebraic relation between
e(z) and (e1(z), e2(z)). In terms of convolution matrix, it is
equivalent to e = C& where C is the (N/24+Q — Zp) x N full
column-rank Sylvester matrix induced by ¢,(z) and ¢,(2).
This relation shows that for each vector e, there exists a
subspace of dimension N —(N/24+Q—Z5) of settings of €, all
of them having the same equalization performance. In order
to overcome this subspace phenomenon that may result in a
numerical overflow in the tap values, leakage is usually used,
see [13]. It corresponds to adding a regularisation term to
the cost function equal to the squared norm of the equalizer.

Finally, notice that the development here is not specific
to the FSE-CMA, but that it applies to any algorithm in
which the cost-function is a function of the global channel-
equalizer transfer function, h(z). For any such algorithm
using fractionally spaced data, the equalization will depend
only on the non-fractional algorithm performing on co(z).

Simulations:

We present simulations of the FSE-CMA for two channels
(one with subchannel disparity, one without), and a 4-PAM
input signal. The asymptotic behavior is displayed by means
of the global channel-equalizer impulse response averaged at
steady-state, h.. The step-size is fixed at 10™*, the global
impulse response is averaged over 10000 iterations.

Example (1):
The zeros of c1(z) are -1.4 and 0.6, the zeros of cz(z) are
1.1 and -0.4. @ = 2, and there is disparity between the
subchannels. For N = 4, perfect equalization is achieved by
e1(z) =~ 0.75204-0.1408z" and e2(z) = —0.7520~0.26882".

We compare FSE-CMA and non-fractional CMA with
this multichannel. As expected, the FSE-CMA achieves
in mean perfect equalization within finite equalizer length
(N = 4 here). For a 32 equalizer length, the non-fractional
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Impulse response

Channel/equalizer global impulse response: (a) FSE-CMA
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Figure 2: Global channel-equalizer impulse response: (a)
FSE-CMA, (b) CMA on cl(z), (<) CMA on c0(z)

CMA applied to cz2(z) gives the global transfer function dis-
played in Figure 2(b). Perfect equalization is far from being
achieved.

Example (2):
The zeros of c1(z) are -1.4 and -0.4, the zeros of c2(z) are
1.1 and -0.4. @ = 2, and there is a common zero between
the two subchannels.

We compare FSE-CMA and non-fractional CMA applied
to co(z) only with a 34 length global channel-equalizer im-
pulse response in both cases. The equalizer time-span for
FSE-CMA was taken as N/2 = 34 — Q = 32, and for CMA
applied to co(z) the equalizer time-span is givem by N’ =
N/2+4+Q—Z, = 33. Figure 2(a) and (c) show that both algo-
rithms achieve the same global impulse response. Moreover,
the achieved impulse response is closer to the desired one (a
center spike) than the inpulse response of the non-fractional
CMA applied to any of the subchannels only (Figure 2(b)).

5. CONCLUSION

Fractionally spaced equalization (with a long enough equal-
izer) can be perfectly achieved via second-order statistics
based techniques when the entries of the multichannel trans-
fer function have no common zero(s). However, when there
are common zeros between the subchannels (or numerically
very close zeros), this property does not hold anymore, and
the identification /equalization must be performed using high-
order statistics. In that case, we have shown that the FSE-
CMA is an appropriate algorithm. Its asymptotic perfor-
mance is limited by that of non-fractional CMA (using a
slightly shorter equalizer) applied to a scalar channel trans-

fer function containing only the part with common zero(s).
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