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ABSTRACT

The problem of determining the unknown responses of a
system which is continuously excited by cyclostationary sig-
nals is considered. By exploiting the periodicity of the input
impulses, an approach based on array signal processing tech-
niques is proposed to estimate the system responses. This
method generalizes Bresler’s idea of resolving overlapping
echoes [1] by partitioning the signals into portions which
fit the mathematical formulation as in [1]. A compensating
algorithm is also devised to compensate the random uncer-
tainties and perturbations of the system and the signals.
Once the system responses are determined, standard meth-
ods can be used to find the positions and amplitudes of the
impulses. Prospective and promising simulation results are
obtained.

I. INTRODUCTION

The field of blind deconvolution has arouse much attention
in the recent years. Under different situations and assump-
tions, different methods have been proposed for solving the
inverse problems [5]. However, in most of these proposed
algorithms, it is usually assumed that the signals of inter-
est are independent and totally uncorrelated. Thus these
methods fail once the assumption is viclated. Hence in this
paper, focus is made on the problem of blind deconvolution
of system excited by correlated cyclostationary signals which
are described below.

Consider the situation as depicted in Figure 1{a) where an
unknown system g(¢) is excited by a cyclostationary signal
s(t) cousisting of periodic random impulses. By periodic,
we mean that the signal can be partitioned into portions of
length T (which is known as the period of the signal) with
d impulses in each portion. Moreover, the delay factor 7; of
the ith impulse s; is constant for all portions. Note that in
general 7; will be different for different ¢, although in most
of the cases they may be integral multiples of a constant .
An example of s(¢) is shown in Figure 1(b) with d = 4. On
the other hand, the system response g(t) consists of d sub-
responses g;(t),i=1,------ ,d, with g;(t) being the impulse
response of the ith impulse s;(¢) of each signal portion as
shown in Figure 1(a). The described system is indeed a
generalized model for many practical engineering problems.
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In mobile telecommunications, g(t) may be viewed as the
characteristics of a multi-path channel with g;(t) being the
impulse responses of the various propagation paths and s(¢)
will then represent the transmitted digital signals and their
echoes. In biomedical engineering, the heart beat mechanism
of the human being can be modeled as the above system with
g(t) being impulse responses of the body and s(¢) being the
impulses generated by the heart muscle. Basically, there
exists many methods for solving the problem if the system
impulses g;(t) and the delay factors 7; are known. However,
in this paper, we will present a sophisticated algorithm to
perform the deconvolution without knowing any of the above
parameters.
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Figure 1: (a) The system under investigation. (b) Example
of s(2).

II. PROBLEM FORMULATION

Reconsider the system as described above. Since the im-
puises are periodic, we can consider a period of time T and
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write that portion of the output as
d
v) =Y sig(t—m)+n(t) 0<t<T, (1)
k=1

where d is the number of effective impulses in the period T
with s; and 7, being their amplitudes and delay factors re-
spectively. n(t) represents the random noises of the system.
Suppose we have N such snapshots, by following similar pro-
cedures as in [1] [3], we can reformulate the problem in the
frequency domain by taking a 4m-point DFT of the output
data (m is the number of digital samples in one portion of
output) and (1) is rewritten as

¥, = (GO M)s; +n;, (2

where ® represents the Schur-Hadamard product operator
and
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n; = [nu Mg coevre n£4m—1] , (5)
.27 27l
¢ = exp(—j 4mt°7'k) R = Nﬁ(m)- (6)

Here y; denotes the DFT of the ith snapshots and G} =
Gk(fT":‘) with G(Q) being the continuousspectrum of g; (¢).
Note that ¢, is the sampling period of the digital output.
By performing a permutation on the rows of y; and as-
suming that the spectrum is smooth enough, we may rewrite

(2) as

s [ (G, © M.)s; ]+[no‘.]

(Go © Moﬁ)si Mg
Noi
= A8+ [ n; ] s (7)
and the covariance matrix of x is given by
Rza; = AOSA; + 021 , (8)
where G, and M, contain the odd rows of G and M re-
spectively and & = Diag([¢, ¢2 ------ ¢4]) with Diag(a)

represents a diagonal matrix whose diagonal elements are
that of the vector @. Note that (7) and (8) has the same
formulation as the typical DOA estimation in array signal
processing problems and hence we can apply ESPRIT to find
@ and G as described in [4]. To demonstrate the ability of
this algorithm, simulations are carried out with d = 4. It is
also assumed that all g;(¢) are equal. The signal covariance
matrix of the four impulses within one period is given by
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and the delay factors are givenas 7, = 0, 7, = 0.25, 75 = 0.39
and 74 = 0.625 (which are expressed as fractions of the total
period). The SNR ratio is 20dB and totally 1025 snapshots
are used to form the covariance matrix. One hundred of
them are shown in Figure 2(a) as reference. The results are
shown in Figure 2(b). Since the estimated pulses are shifted
and scaled, for the sake of comparison, all the pulses are
normalized to have maximum amplitude of one and shifted
to the center accordingly before plotting in the figures. The
estimated 7 are given as 7, = 0, 7, = 0.289, 73 = 0.411 and
74 = 0.643. Although the estimated delay factors deviate
quite a lot from the actual ones, from the figures, it is clear
that the deconvolving results are very good as little errors
are observed between the original and the estimated impulse
responses. The deviations of the estimated delay factors are
mainly due to the assumption G, =~ G, which introduces
unavoidable errors to the algorithm.
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Figure 2: (a) 100 snapshots for signals with precise T
and time-invariant 7 (b) The four deconvolved impulse re-
sponses represented by dotted lines. The solid line represents
the actual pulse.

III. MODIFIED ALGORITHM

Although excellent results are obtained in the above simula-
tions, this simulated situation is too ideal in practice because
we have assumed that 7, do not change with time. In reality,
there will always be some fluctuations in 7;,. Moreover, our



a priori knowledge of the period T may not be exact due to
imprecise estimation, equipment error or system properties.
Large errors and discrepancies will occur as a result, espe-
cially when the snapshots are obtained sequentially from a
long but single time series. These random perturbations de-
grade the performance of the algorithm greatly as will be
shown in latter simulations.

To circumvent this kind of ubiquitous uncertainties, we
have to take into account the deviations in 7 and T'. First
of all, notice that the deviations in the delay factors are ran-
dom in nature. Moreover, though the perturbations intro-
duced by inexact period is not really random, if this error
is small and there are a large number of snapshots which
are obtained sequentially from single time series, we may
assume the perturbations to be uniform. Hence the delay
factors may be expressed in the form

T = Tk + i, (10)

here 7, is the mean delay factor for the & impulses and §;
represents the random perturbations from the actual delay.
With this, (2) may be rewritten as

gt=(G®Mi)8i+ni1 (11)
where M is given by
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= MoP;, (12)

with ©; = exp ™% *. From this, we can rewrite (7) as
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(A, ®8P,)s; + [ e ] , . (13)
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where P,; and P.; contain the odd and the even rows of
P; respectively. To derive a closed form for the covariance
matrix of the the perturbed data Z, we assume 6;; to be
ii.d. and treat ©; be the outcomes of an uniformly dis-
tributed random variable @ with zero mean. Moreover, it is
assumed that @ is statistically independent with the noises
and the signals. The justification of these assumptions is ob-
vious from our previous discussions on 8;;. Based on these
assumptions, the data covariance matrix is given as

Rz

1
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E{[(A, ® 6P)s + 1] [(4, ® 6P)s +n]'}

= E{(A,©®6P)ss (A, ®P)'} + oI

E{Zs 8y, © 5p [ao, ®5P]] }

d

> Z s;B{(as; @ 0p} [a,; @ 8p,]"},  (14)

1=1 y=1

where s;; = E{s;s7}, a,, and dp; are the ith column vector
of A, and P respectively. Since

E{[a,, © 6p;] [ao, ©8p,] "}

E{Diag(a.;)(6p;dp;)Diag(a; )}

= Diag(a,,)E{dp;dp;}Diag(a; ) (15)
by substituting (15) into (14), we get
Ryz = (A SA) OV + 071, (16)
with
V = E{6p.p;}
Ol
ot -1 ~(4m—1) 50 —(4m—2
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and
Vi(i,j) = E{@*¢7) (18)
Va(i,j) = E{@*7) (19)
Vi(i,j) = E{@*"%}, (20)

Notice that (17) follows from the fact that @ are i.i.d.
for different ¢ and k. By comparing (16) and (17) with the
formulations as in [2], it can be seen that the compensating
principle as stated in [2] can be applied, with slight modi-
fications, to compensate for the undesirable perturbations.
The main idea of the compensating algorithm is to perform
a point by point division of the perturbed data covariance
matrix Rz by the perturbation matrix V' before the blind
deconvolution procedures. The details of the algorithm can
be found in [3].

IV. SIMULATION RESULTS

To illustrate the significance of our modified algorithm de-
scribed above, simulations are carried out with the same im-
pulse response g(t) as in Section II with fluctuations added
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to the delay factors of the impulses. The delay factors are set
to be uniformly distributed with unknown amplitude about
their mean values. The mean delay factors are given as 7y
=0, » = 025, 75 = 0.39 and 7, = 0.625 with the same
signal covariance matrix as (9). Moreover, the period of the
impulses are inexact and deviated from the actual period by
7%. Though this deviation is not large, it will cause great
problems as the snapshots are obtained sequentially from
the convolved signals. The deviations will be carried on-
wards and positions of the pulses will vary from snapshots to
snapshots. This situation is depicted in Figure 3 where 100
sample snapshots are shown. It can be seen that they look
messy. Although the perturbation parameter is unknown,
by intuitive reasoning, we may assume its maximum ampli-
tude to be half of the estimated period. In fact by observing
Figure 3, the deviations caused by wrongly estimated period
determines the maximum amplitude of the perturbations to
be approximately half of the actual period.

20 40 80 80
Bampled Time

Figure 3: 100 snapshots for signals with estimated T and
time-varying 7x

Results obtained by the unmodified deconvolving method
are shown in Figure 4(a) while results for using the modified
deconvolving algorithm are plotted in Figure 4(b) By com-
paring the figures, it is very clear that the modified method
outperforms that of the unmodified one when there are er-
rors in estimating the actual period or when the delay factors
change with time. This fact is further reinforced by Table 1
which summarizes the results of the estimated delay factors
and the errors in the estimated pulse shape in all the three
cases (including that from Section II). From the data, the
mean squared errors between the estimated and actual pulses
(MSE-PULSE) for modified deconvolution algorithm are
much smaller than that of unmodified method and the esti-
mated delay factors (EDF )are more accurate.

EDF MSE-PULSE
T T2 T3 s | P1| P2 | P3| P4
(a) {0.00{0.29 ]| 0.41 | 0.64 0.08 [ 0.06 | 0.02 | 0.09
(b) {0.00 [ 0.34 | 0.45 | 0.69 0.15 | 0.18 | 0.15 | 0.17
(c) | 0.00 {0.32 | 0.42 | 0.65 0.10{0.11 | 0.08 | 0.09

Table 1: Table showing the estimated delay factors (EDF)
and mean squared errors (MSE-PULSE) between the esti-
mated and actual pulses. (a) refers to results in Figure 2(b).
(b) corresponds to results in Figure 4(a). (c) represents the
results in Figure 4(b). Pi stands for pulse 1.
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Figure 4: (a). The deconvolved impulse responses obtained
without using any compensating method. (b). The decon-
volved impulse responses obtained by using the modified al-
gorithm.

V. CONCLUSION

In this paper, we have devised a robust blind deconvolution
algorithm which is based on the principles of array signal
processing. The algorithm can be used to find the unknown
impulse responses of a system excited by cyclostationary im-
pulses in the presence of signal fluctuations.
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