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ABSTRACT

The problem of fractionally-spaced (FS) blind adap-
tive equalization under symbol-timing-phase offsets is
considered. It is well-known that in the case of irained
(non-blind) equalizers, the performance of FS equal-
1zers 18 independent of the liming-phase unlike that
of baud-rate equalizers. Moreover, trained FS equaliz-
ers synthesize optimal fillers in MMSE sense, hence
are superior to baud-rate trained equalizers. These
advantages of trained FS equalizers have not been
shown to be true for blind equalizers, rather they have
been simply assumed. We present a simulation ezam-
ple where such advantages do not materialize. Then
we present a solution based upon a parallel, mul-
timodel Godard adaptive filler bank approach which
yields a performance almost invariant w.r.t. symbol-
timing-phase. An illusirative simulation ezample 16-
QAM £V22 source{ signal is presented where effect
of symbol-timing-phase offset is studied via computer
simulations.

1 Introduction

It is known that, in the case of trained (non-blind)
equalizers under symbol-timing-phase errors, the per-
formance of baud-rate equalizers can seriously degrade
if there is an excess bandwidth [3]. Under excess
bandwidth, baud-rate equalizers operate on data sam-
pled at a rate lower than the Nyquist rate, hence,
they can only equalize an aliased version of the true
channel. The aliased channel undergoes changes with
timing-phase changes. For some choices of the timing-
phase (bad timing-phase), severe destructive interfer-
ence can take place in the aliased-channel transfer
function leading to nulls or near-nulls in the transfer
function. A baud-rate linear equalizer whose length is
fixed a priori independent of the timing phase, may not
be able to adequately equalize the severely distorted
aliased channel, and moreover, it leads to greater noise
enhancement for such channels (because of the pres-
ence of near-nulls). In contrast, fractionally-spaced
equalizers sample data at least as fast as the Nyquist
rate so that they equalize the true channel and their
performance is independent of the timing-phase er-
rors. Such advantages of trained fractionally-spaced
equalizers have not been shown to be true for blind
equalizers, rather they have been simply assumed, as
in [5],e.g. We present’ a simulation example where
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such advantages do not materialize. Then we present
a “fix” based on [8].

2 Model Assumptions

Suppose that we sample at M-times the baud rate
with signal samples spaced T/ M seconds apart where
T is the symbol duration. Then the sampled version
of the continuous-time received signal y(t) is given by

[7),18]

Yie = y(t) |t=kT+to+("—1)% (7' =1,2,.- 1M)

La;

= Z finp—n + M, 1)

n=—L,;

where we have M samples every symbol period, in-
dexed by %, and ¢y denotes some arbitrary time offset.
The information sequence I} is one “sample” per sym-
bol and is a zero-mean, 1.i.d. complex sequence. The
sequence {f;x} (with transfer function F;(z)) is an FIR
linear filter (with possibly complex coefficients) that
represents the equivalent (sub-)channel. The noise se-
quence {1n;x} is assumed to be zero-mean Gaussian and
independent of {Ix}. See also Figs. 1 and 2.

3 Fractionally-Spaced Godard Adap-

tive Blind Equalizer
The fractionally-spaced Godard adaptive blind
equalizer (FSGABE) [2],[5] acts on the data {yiz,i =
1,2,---, M} via the FIR linear equalizer {cix, ¢ =
1,2,---,M; 0 < k < K — 1} (transfer function C;(z)
(:t=1,2,---,M) ) to generate the symbol-spaced out-
put

M K-1
ho=3 > ewo-n) - (2)
i=1 j=0

The (fractionally-spaced) equalizer coefficients are ad-

justed to minimize the cost function E[|I;|? — Rj)?
where R; = E{|I;|*}/E{|I+|*}. Godard has derived
an LMS-like stochastic approximation algorithm for
the above minimization. Let c,, denote the M-vector
of equalizer tap gains at time sample n given by c,
= {cix(n), 1=1,2,---,M; 0 < k< K —1}, and let
Y, denote the KM-vector of data samples on which
cn, operates. Then the equalizer tap gains are updated

as - o~ ~
Chrtl — Cp — AY:-;,In [lInlz - R2]: (3)
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where A, a positive scalar, is the filter step-size. A
block-diagram of FSGABE is shown in Fig. 1.

Foschini [4] has analyzed the convergence of this
class of blind equalizers under the idealized case of
no noise and doubly-infinite linear equalizers. Under
these conditions, asymptotically the equalizer transfer
functions satisfy

M
Y E()Gi(z) = as (8

where is A is a complex constant with [4| = 1 and n4
is an integer. Constants A and ng reflect the “phase-
rotation” and time-delay, respectively, that the Go-
dard equalizer cannot resolve. Notice that (4) does
not indicate a unique solution; rather it shows multi-
ple solutions each one of which leads to zero ISI (in
the idealized case). In the presence of noise, not all
solutions to (4) lead to same noise enhancement; some
are much worse than the others. The problem is that
there is no inherent mechanism in the Godard equal-
izer that would “prefer” less noise enhancing solution
over more noise enhancing solution! Moreover, in the
case of finite-length equalizers, there are additional
convergence problems [9]. Let’s look at a simulation
example.

Simulation Example The basic pulse shape used
for transmission is a raised cosine pulse ¢(¢,a) with a
roll-off factor «. The equivalent continuous-time chan-
nel impulse response is given by

h(t) = iO: dic(t — iT, 0.3)Wyr(t — iT)

1=0

where {d;, 0 < i < 10} = {0.04, -0.05, 0.07, -0.21,
-0.50, 0.72, 0.36, 0.60, 0.21, 0.03, 0.07}, T denotes the
symbol interval and Wyr(t) =1 if |t| < 2T, =0 other-
wise. That is, the raised-cosine pulse is truncated to
four symbol intervals. Let ty represent the symbol-
timing offset such that for T/M sampled data the
channel impulse response is given by h(to + (kT'/M)).
The channel amplitude spectra for T-sampling and
various timing offsets ¢y are shown in Fig. 3. Fig. 4
shows the channel amplitude spectra for 7'/2-sampling
and various timing offsets ¢5’s. The dependence on tg
has markedly decreased in Fig. 4.

Computer simulation experiments were carried out
for 16-QAM (V22 source) signals using T- and T/M-
spaced data and equalizers for M = 2,3 and 4. In-
dependent records of data with o7/03 = 20dB were
generated, where o? is the variance of I; and crg is
the variance of 7. A record length of 15000 symbols
was used per run. The FSGABE step-size was “op-
timized” by trial-and-error to achieve the minimum
mean-square error at the equalizer output at the end
of the run. The equalizer was initialized by setting
the center tap to 2 + 70 with all other taps set to
zero [2]. Length of the equalizer was 31 symbols lead-
ing to M x 31 taps (K = 31). Fig. 5(a) shows the

symbol error rate (SER) for FSGABEs corresponding

to M = 1,2,3,4, based upon 10 Monte Carlo runs.
(M =1 correspond to baud-rate equalizer.) It is seen
that oversampling does not lead to a performance in-
variant to timing offset o except for M = 4. However,
even for M = 4, the SER for some #¢’s is quite infe-
rior to that for baud-rate equalizer, quite unlike the
trained case [3].

4 Multimodel Godard Adaptive Filter
Bank Approach [8]

For details refer to [8]. A block diagram is shown
in Fig. 2. Now we have a bank of baud-rate Go-
dard blind equalizers operating independently on each
subchannel. The baud-rate (running) Godard cost is
used to separate the “good” subchannels (less noise-
enhancing) from “bad” subchannels (having nulls or
near-nulls, hence very noise-enhancing). Various ways
are discussed in [8] to select and “fuse” various sub-

channels to obtain the equalized output I (see Fig.
2).

Back to the Simulation Example The results
averaged over 10 runs are shown in Figs. 5(b) and 5(c)
for this approach under two different ways of combin-
ing good subchannels. Best subchannel refers to selec-
tion of a single subchannel, the one that corresponds
to the least baud-rate Godard cost. Direct sum refers
to selection of a group of subchannels that are close
to the best subchannel, and then aligning (shifting
and/or scaling) the respective outputs to simply sum
them up. The results shown in Figs. 5(b),(c) were ob-
tained under exactly the same conditions as those for
FSGABE, namely, center tap initialization, and length
of each baud-rate equalizer equal to 31 symbols. It
is seen from Fig. 5 that a substantial improvement
has been obtained by use of the approach of [8] over
FSGABE, both in terms of insensitivity to symbol-
timing-phase and in terms of absolute performance as
measured by SER.

We note also that for baud-rate Godard equalizers
the problem of mis-convergence due to finite length
equalizers[9] can be handled via more educated ini-
tialization as discussed in [10]. However, for the con-
sidered example center-tap initialization along with an
equalizer length of 31 symbols was found to work well.
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Figure 1: Fractionally-Spaced Godard Adaptive Blind Equalizer
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