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ABSTRACT

Eigendecomposition based techniques such as MUSIC
and its variants constitute effective methods for de-
termining the direction of arrival(DOA) estimates of
narrowband sources. In this paper, a new strategy
which extends the MUSIC algorithm to higher order
statistics(HOS) is proposed for estimation of the DOA.
Also, we present a new method for the estimation of the
number of multiple narrowband incoherent and coher-
ent non-Gaussian source signals arriving on the array
which we consider as a significant contribution. The
performance of the technique is compared with other
recently suggested HOS-based methods.

1. INTRODUCTION

Many sensor array processing methods which utilize
the eigendecomposition of the array spatial covariance
matrix have been developed for locating narrowband
farfield Gaussian sources embedded in Gaussian noise.
Generally, they require a search procedure in the pa-
rameter space and have resolving capabilities which
are more powerful than coventional beamforming tech-
niques.However, when the arriving source signals are
assumed to be non-Gaussian (as it is usually the case in
a real-world enviroment), these second-order methods
are suboptimal and hence it becomes essential to de-
velop new techniques to cope with this problem. Hence,
the application of higher order statistics (HOS) for di-
rection of arrival (DOA) estimation has many advan-
tages over the conventional techniques. A variety of
HOS-based techniques have appeared in the open lit-
erature which employ higher order spectra in deriving
new high resolution direction finding algorithms. The
bearing estimation method based on the asymptotic
distribution of the cross-bispectrum estimate of the ar-
ray data has been addressed by Forster and Nikias[1].
They have used the concept of maximum likelihood
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of the asymptotic distribution in formulating their al-
gorithm, called, cross-bispectrum beamformer. Porat
and Friedlander[2] derived two sets of algorithms that
employ the fourth order statistics of the array data.
One is a MUSIC-like algorithm which is based on the
eigendecomposition of the fourth order cumulant ma-
trix of the data. The other is an optimal estimator
based on the minimisation of a certain cost function.
This cost function is related to a fixed set of cumulants
of the array data. The results in [3] are based upon
information-theoretic measures in the HOS-domain of
the array geometries. In [4], we have presented a set
of three new HOS-based algorithms for the localization
of non-Gaussian farfield sources. There the exploita-
tion of HOS provides the ability to effectively remove
the spatial influences of Gaussian noise, hence yielding
improved estimates. These algorithms are based on a
new class of performance measures which are related to
the bispectral power of the snapshot data. This paper
extends the results of [4] by deriving a new cumulant-
based MUSIC-like high resolution techniques for the
localization of non-Gaussian sources. We show that
performing the eigendecomposition of the bispectral
power matrix enables us to construct the orthogonal
signal and source subspaces in the non-Gaussian do-
main, and to form the spatial spectrum by employing
a search procedure. We also propose a new method
for determining the number of source signals arriving
on the array. The techniques also shed light on the
problem of combating the effects of source coherency.
Experimental results are given which demonstrate the
improved DOA estimation resolution of the proposed
method as compared to those in [4].

2. BACKGROUND PRELIMINARIES

Consider an equally spaced linear array of M identical
sensors, on which P(< M) farfield uncorrelated radia-
tion sources are incident. The array sensor output can



be expressed in terms of Generalised Functions[1][2] as

P .
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Here P is the number of complex source signals inci-
dent on the array. These signals are assumed to be
zero mean, spatially and temporally stationary non-
Gaussian random process with {dS,(w)} denoting the
corresponding innovation representation of the signal
arising from the p'* source. The representation of Eq.(1)
allows consideration of both narrow-band and broad-

band signals by employing appropriate models for {dS, (w)},

e.g. for narrow-band signals, dS, (w) = a,6(w — wo)dw,
where a, represents the signal amplitude. Although
in our formulation we have assumed the source signals
to be independent, we have also investigated the case
for coherent source signals and have shown that estima-
tion inaccuracies can be overcome by employing spatial
smoothing in the bispectral domain. X(¢) is an (M x 1)
noisy data vector of the sampled snapshots from the
sensor system at time instant {. M denotes the number
of sensors. V() is (M x 1) receiver noise vector that is
assumed to be zero mean, spatially, temporally station-
ary, independent and Gaussian. The noise and source
signals are assumed to be spatially and temporally in-
dependent from each other. e(w;8,) is an (M x 1)
directional vector for source at bearing fp, i.e. it repre-
sents the array response to the source signals. This vec-
tor is sometimes known as the transfer vector (between
the signal and sensors) and is denoted as e(w;0p) =
[ 1 el-dwm) el-jwra}
Tpk = m%‘yl is the inter-sensor delay of the wavefront
at the k'* sensor. d is the sensor spacing and w is the
center frequency of the source signals. As shown in [4],
the third order cumulants (and bispectra) of X(t) (for
narrowband independent signals with wy = midband
frequency) maybe expressed as

Cx(m,m2) = gfwo(ri+m) E Co(m1,m2)Eg %) (2)
b4

Bx(wi,w2) =) By(w1,w2)Eg(6,)  (3)

where Eg(f,) is the directional vector in the bispec-

tral domain, given as the Kronecker product, Eg(6,) £
[o*(85) ® e(6y) @ e(8,)], {Cy(r1, 2)} and {B, (n, 03)}
is the third order cumulant and bispectrum of the p*»
source respectively.
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3. HOS-BASED MUSIC ALGORITHM

Considering the new performance criteria[4], which re-
lates to the cumulant power of the array output, via

Px g //CX(T]_,Tz)CxH(Tl,Tz)dTldTg (4)

by substituting Eq.(2) into Eq.(4) we obtain
I'x = ECE¥ (5)

where E = [ Eg(6,) Eg(62) Eg(fp) ] is the
M?3 x P steering matrix in the bispectral domain with
its column P steering vectors corresponding to each of
the incident wave. It is clear that E is full rank. C is a
P x P source cumulant power matrix where the (p,q)**
element is given by fpr(Tl, Tz)CqH(Tl,Tz)dTlde. C
is Hermitian, non-diagonal and is full rank if only un-
correlated or partially correlated source signals are present.
Thus from Eq.(5), Tx is also Hermitian and it is likely
that it may be singular. To acheive inversion for com-
puting purposes we employ diagonal loading which is
expressed as

I'x =ECE? + Ty (6)

where 'y is a loading factor, Py = eI with ¢ is the
Tikhonov’s regularisation parameter. This motivates
us to view the loading factor, €I, as a synthetic con-
tribution of uncorrelated non-Gaussian noise cumulant
power matrix. Consider A, and u,(n = 1,2,.. ., M3)
to be the eigenvalues and the corresponding eigenvec-
tor of the matrix pencil (I'x, T'v) where the former are
ordered in a monotonically non-decreasing[5] fashion
le. Ay > Apy1 then the following observation holds{5]:
(1)/\P+1 = /\P+2 == /\Ma =€, (2) IfCis full rank,
each of the columns of E are orthogonal to the matrix

U, 2 [upy1 upyy uprs] . Since € is chosen
aprior, observing the number of eigenvalues in Eq.(6)
different from ¢, yields the number of non-Gaussian
sources impinging on the array. Observation (2) sug-
gests that we may estimate the DOA of the source sig-
nals by performing the eigendecomposition of the cu-
mulant power matrix

et oo (5 2)(5) o

where A, and A, are the (Px P) and (M3- P) diagonal
matrices given by A, = diag(\, A, ..., Ap) and A, =
diag(c,¢, ..., €) respectively. U, and U, are the (M3 x
P) and M3 x (M3 — P) dimensional matrices of the
signal and noise subspaces respectively. The spatial
spectrum is then established as :

1

P(d) = ——————
) = R GI

(8)
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where the largest peaks represent the source directions.

4. SOURCE COHERENCY

Source coherency leads to changes in the structure and
rank properties of the source bispectral power matrix,
C, hence the noise eigenvectors, something, need not
necessarily be orthogonal to the source steering vectors.
Here we propose spatial smoothing[6] in the bispectral
domain which gives a preprocessing method for decor-
relating highly correlated narrow-band non-Gaussian
source signals. Mathematically, this can be expressed
as: T'x = % Z,?=1 (f‘;‘(), where (f‘;‘()
k** subarray and Q is the number of overlapped/non-
overlapped subarrays.However, to illustrate the treat-
ment tractably, we will only deal with the case of three
source signals, s1(t), s3(¢) and s3(¢), impinging on the
array, where two of the source signals are correlated and
the other is independent. Let us now consider that the
uniform array with M sensors is divided into overlap-
ping subarrays of size Q with sensors, {1, .. ., @} form-
ing the first subarray, sensors {2,...,(Q + 1)} forming
the second subarray and so on. The third order cumu-
lant of the k*» subarray can easily be shown to be

Cx*(r,m) = TN "N N Cpgr (11, 72)9)
P g T

{ejwo(r"-rq_")}(k-l)E®(9p: 04, 6r)

The cumulant power matrix of the k% subarray can
then be written as

[ lextu] et )"

-~ EDG-D / / C(r1,72)CH (71, 12) » (10)
[D(k—l)]HEH

where the identities are defined as follows for the 3
source signals case : E

denotes the

r'x*

)

E
Eg(61,62,62) Eg(02,61,61) Eg(63,6,,0,)

Eg(02,02,01) Eg(02,62,02) Eg(s,0s,63) ]

D = diag { e.‘iwo(91~91—91) ejwo(ﬂl—ol—og) . _(.12)
ejw.,(os-o,-e,)}

C(r,m) 2 [ Cua(ri,m2) Cua(mi,m2) Ciaa(m, 403)

Ci22(11,72) Coni(m,m2) Cora(m,72)

Can(n,m) Caze(m,72) Caas(m, 1) |

[ Eg(61,61,61) Eg(61,81,62) Eg(8:,0s,64)1)

Equation (10) can be written as
I'x* = ED¢-DCg[DE-D)HEH (14)
with

Cs -é_//C(TI,TQ)CH(Tl,Tg)dTIdTQ (15)

We now define the spatial smoothing in the cumulant
domain as

-~

I'x

e

1 &,
ngx
k=1
Tk
E [EZD("‘UCS[D“-U]H E7 (16)
k=1

where K = M —Q+1 is the total number of subarrays.
Equation (16) can be compactly rewritten as

I'x = ECsEX (17)

where the modified source cumulant power matrix is
given by
K
Cs Z DG¢-Dg[Dk-1)H (18)

We shall now prove that Cg must be of rank 9 for the
three impinging sources to be localized. Equation (18)
can be conveniently written as

Cs = GGH (19)
where
GZ[C, DC, D*C;--- DE-Uc,| (20)
with C, = [ Ci11 Ci1z - Cass ] denoting the Her-
mitian square root of ﬁCs, l.e.
1
C.cf = % Cs (21)

We observe that the rank of Cg is the same as the rank
of G, hence we have to prove that p{G} = 9. But G
can be decomposed as

G =BV (22)
where D is the (9 x 9) diagonal matrix defined as
B=diag{ Ci11 Cua ---Csss } (23)
and V is the (9 x L) Vandermonde matrix

1 v v} ... of-1
1 v, 03 ... v.f,{_l

V=1 . . (24)
1 v 03 ... of-1
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where the elements if V are defined as follows: v; =
ejwo(91—01-91)’ v = e]'wo(91—01—91)’ ve = ejwo(91—91—92),

v3 = ejwﬂ(ol_oQ"ol)’ vy = ejw0(01—02_02)’ vg = ejwﬂ(o2—ol—ol),
ve = ejwo(oz—al—ﬂz), vy = elwo(82-83-8,) vg = efwo(92—63~83)
and vy = e/wo(93—03-03) From Eq.(24), the rank of V
depends on K, hence if K > 9, p{V} = 9 which im-
plies that G is also of rank 9. Therefore, the rank of Cs

is restore and hence can be used to localize the three
source signals irrespective of their of coherence.

5. COMPUTER EXPERIMENTS

To demonstrate the performance of the MUSIC-like
method and the detection of coherent sources, a lin-
ear array of M = 6 identical, equispaced sensors is
used. The non-Gaussian source signals are generated
using the same centre frequency and in all cases we
have used 8192 snapshots to estimated the bispectral
power matrix. Three equipower sources are incident
at —65°, 10° and 50° bearings and the SNR is main-
tained at —7dB. For comparison purposes, the resolv-
ing performance of the algorithms proposed in[4] are
also included. Fig.1 shows the results of the proposed
HOS-based MUSIC-like method against the methods
of [1]. The decorrelating effect of spatial smoothing
in the bispectral domain with linear array segmented
into 10 overlapped subarrays is shown in Fig.2, where
the peaks denote the DOA of 2 fully coherent and 1
uncorrelated sources at 50° and 70° and 35°. Note the
dynamic range of all the algorithms. Note the dynamic
range of all the algorithms.

6. CONCLUSION

In this paper, a HOS-based eigendecomposition method
is proposed for the estimation of DOA’s of non-Gaussian
source signals. A method of determining the number
of sources impinging on a linear array is also presented.
It is also shown that spatial smoothing in the bispec-
tral domain can be used to combat the effects of source
coherency. Simulation results show the effectiveness of
the proposed method.
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5 Sensars, 8192 snapshats, 3 sources at 85, 10& 50degrees
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Figure 1: HOS-based algorithms for 3 uncorrelated
sources.
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Figure 2: Smoothed HOS-based algorithms for 2 un-
correlated and 1 uncorrelated sources



