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ABSTRACT

A new approach for identifying the presence of
resonance in the acoustic backscatter from unknown elastic
targets by isolating the resonance part from the specular
contribution is developed. The method allows for
characterization of both the time history and time-scale of
the resonant contribution of the target directly from the
acoustic backscatter. An adaptive transversal filter structure
is used to estimate the specular part of the backscatter and
consequently the error signal would provide an estimate of
the resonance part. This scheme does not require any
underlying model assumption about the elastic return and
further can be applied to targets of unknown geometry and
thickness. The adaptation rule is based upon fast Recursive
Least Squares (RLS) learning. Test results on acoustic data
are presented which indicate the effectiveness of the
proposed approach.

1. INTRODUCTION

The problem of underwater target detection and
classification from acoustic backscatter is the central focus
of this paper. It has been shown [1]-[3] that at certain
frequencies the acoustic backscatter from elastic targets
exhibits certain resonance behavior which closely relates to
the physical properties of the target such as dimension,
thickness and composition. Several techniques [4]-[7] have
been developed to characterize the resonance phenomena in
acoustical backscatter from spherical or cylindrical thin
shells. A joint time-frequency examination of the impulse
response of a thin spherical shell is investigated in [4]
using the Wigner-Ville distribution. This time-frequency
representation provides localization of the signal energy
along both the time and frequency axis. In [5) Wilbur and
Kargl applied a wavelet transform to detect the resonance
corresponding to the mid-frequency enhancement of a thin
spherical shell submerged in water and surrounded by
biologics. It is shown, in the simulation results in [S], that
the mid-frequency enhancement corresponding to the lowest
order symmetric Lamb mode [1] can be identified through the
wavelet decomposition in the acoustic return from a thin
spherical shell surrounded by biologics.
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The purpose of this paper is to develop a new adaptive
approach for isolating the resonant response from the
acoustic backscatter of a submerged elastic target of
unknown shape. The approach allows for resonance
extraction directly from backscattered data. Although
resonance extraction has been studied and developed
extensively for spherical shells, large aspect ratio
cylindrical shells and cylinders with spherical end caps
[6],[7], the problem is difficult when applied to an elastic
target of arbitrary geometry for which the poles of the
resonances are not known a priori. This is especially true
when the specular and resonant returns overlap in both the
time and frequency domains. The method in this paper is
general in the sense that it does not require generation of
the impulse response or the transfer function and can be
applied to a target of unknown geometry and thickness. An
adaptive transversal filter structure is used to estimate the
specular part of the backscatter and extract the hidden
resonance characteristics of the elastic objects. The
estimate of the specular part is provided at the output of the
system and consequently the error signal extracts the
resonant part. The adaptation rule is based upon the RLS
learning. The adaptive processor is applied to both the time
domain and time-scale representations of the acoustic
backscatter from a submerged elastic target whose shape is
that of a tapered, notched cylinder with flattened ends and
rivets. Adaptive separation on the signal time-history is
applied to narrow-beam data while wavelet separartion is
applied to broad-beam data. The results are then compared
to those collected for a non-target concrete chunk of a size
similar to that of the target.

2. ACOUSTIC RESONANCE CHARACTERIZATION

The theory of acoustic resonance scattering from
submerged elastic shells has received considerable attention
[1]-[3]. The acoustic scattering response from thin shells
can be divided into three frequency bands of interest : the
low frequency band, which is defined as the region for which
the acoustic wavelength, A , is less than the shell thickness,
h; high frequency band which is defined as the region for
which A exceeds the radius,a, of the target; and the mid-

frequency band of operation defined as h<Ai<a . The mid-
frequency band has been of particular interest in the
characterization of small elastic targets [1]-[3]. This band is
dominated by the specular reflection and the lowest order
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symmetric, s(), and anti-symmetric,a), Lamb modes which

propagate on the shell. The resonant backscatter attributed:
to the sg and ag Lamb modes have been found to offer:

viable signature clues for identifying submerged elastic
targets [2],[3]. However, identification of the elastic
response associated with the mid-frequency region is non-
trivial, especially for targets of arbitrary geometry. That is,
the resonant return can be difficult to isolate from the
specular component and is often buried in the noise. When
the target parameters are not known a priori a large time-
bandwidth product (TB) may be sent to sufficiently excite
the resonant modes. However, the specular and resonant
responses in the acoustic backscatter may overlap both
temporally and spectrally. This, coupled with other factors
in a real target detection environment, such as sensitivity of
the sensors to the environmental and operating conditions,
non-repeatability of the target signatures, competing clutter
objects having similar response as the actual targets and
lack of a priori information about the actual targets, create
a complex signal processing problem.

Figure 1 shows the impulse response for a steel
spherical shell where the ratio of the shell thickness to
outer radius is 2%. This impulse response exhibits several
prominent parts which are associated with different
scattering phenomena [1]-[3]. The leading spike is
associated with the specular reflection (direct geometrically
reflected return) on the outer surface of the shell. This is

followed by a decaying sequence which is partly attributed to

the first order symmetric Lamb wave (s1) and partly due to
the transmitted bulk waves undergoing multiple reflections
between shell surfaces. This contribution is in the high
frequency region and is sometimes referred to as the “"quasi-
thickness resonance”[3]. The echoes labelled by sg and aj
are associated with the lowest symmetric Lamb wave and the
first order supersonic anti-symmetric Lamb wave,
respectively. The mid-frequency enhancement corresponds
to those prominent oscillations designated by ag. which are
atributed to the subsonic branch of the lowest order anti-
symmetric leaky Lamb mode. In the frequency domain for
those frequencies where this mode is excited, a resonance
phenomenon is caused. These resonances are closely related
to the surface waves circumnavigating around the shell [1].
The high-Q resonance is often buried inside a wide-band
spectrum associated with the specular part. The center
frequency of this Gaussian type spectral envelope is
inversely proportional to the shell diameter and thickness.

The time-scale representation for the 2% shell, using
five cycle cosine modulated Gaussian wavelets, form a ridge

along all dilations associated with the specular reflection:

[5]. The contribution attributed to the first return from the
subsonic branch of the lowest order anti-symmetric Lamb
wave occurs in regular time intervals that are localized in
scale. This midfrequency enhancement region moves to
smaller scales with decreasing shell thickness.

In the next section a new approach for characterizing
the presence of resonance in the acoustic backscatter from a
target of unknown geometry is introduced. This method uses
an adaptive filter structure to isolate the resonance part from
the specular contribution in either time domain or time-scale
representation.
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3. ADAPTIVE SIGNAL SEPARATION

The structure of the adaptive system used for separating
the hidden resonance in the acoustic backscatter is shown in
Figure 2. The reference input to the adaptive system is the
incident waveform while the desired signal is the
backscattered. In this way, the adaptive system produces an
output which is the estimate of the specular part and the
error signal would provide an estimate of the resonance part.
There are two principal ideas behind the development of this
structure: (1) the specular part of the acoustic backscatter is
more correlated with the incident than the resonance (elastic)
part, and (2) there is always a time delay between the onset
of the specular part and that of the resonance part. Thus,
provided that the learning is fast enough, during this period
of time the adaptive system produces an output which is an
accurate estimate of the specular part. Since the system has
infinite memory and further the specular part is more
correlated with the input (incident) the system continues to
provide a good estimate of the specular part even after the
resonance has appeared. As a result, the error signal
provides an estimate of the resonance part of the

backscattered. Note that the delay A is provided to account
for the actual delay between the incident and the
backscattered.

If the adaptive system is of moving average (MA) type
with tap weights denoted by wi(n)'s for V i € [0O,N-1], and
ne [0,P-1] where N and P respectively represent the filter

order and the number of points in the signal, then the output
of the filter at time n is the weighted sum of the N present

and past input samples x(k)'s, k € [n,n-N+1], weighted by
the associated tap weight, wi(n-1). In vector form the
expression for the output y(n) is given by

t
y(@m=W (a-1) X(n)
89
where X(n) and W(n-1) represent the input and weight
vectors, respectively i.e.

W(n-1) = [wg(n-1) wi(n-1) . ... wN_1(n-1)] ¢
and (2a)

X(m)= [x(n) x(n-1) . . .. x(@-N+1)] ¢
(2b)

As can be observed from (1), the outpur at time n i.e. y(n)
is estimated using the weights at time (n-1). Now, using the
current sample of the desired signal, d(n), the weights can be
updated using a weight adaptation rule for transversal filter
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Figure 2. Adaptive Structure for Estimation of Resonance
Part.

structures [8]. The weight updating equations using the RLS
scheme are given in order as [8]:
K(n) = I:(n-l)X (n)
p+ X (@) P(n-1) X(n) (a)
Al
e(n)= d(n) - y(n) = d(n) - W (n-1) X(n)
(3b)
W) = Wa-1) + K@) e(n)
ED)
P@) =7 [1- K@ X'@) ] P(n-1)
(3d)

where VAVis the estimate of the weight vector W; e(n) is the
estimation error (resonant part); K(n) is the gain vector;
P(n) is the inverse of the input data covariance matrix and j
is the "forgetting factor" which determines the memory (M =
1/(1-u)) of the adaptation process and O<p<l. Generally, for

stationary processes W is chosen to be unity (i.e.infinite
memory) which corresponds to standard LS solution. Note
that in our application we require infinite memory in order
to provide a consistent estimate of the specular component
even though the acoustic backscatter is a non-stationary
process. The process starts with a set of initial values

A
namely P(0)=8-11 and W(0)= 0 where § is a small quantity
[8]. For large sequences the choices of the initial
conditions do not impact the performance of the RLS
scheme. :

For wavelet separation, time-scale representations for
the transmitted pulse and the acoustic backscatter are
generated by convolving these signals with scaled five cycle
cosine modulated Gaussian; the collection of which act as a
bank of filters which span the frequency range under
investigation. Resonance characterization at each scale is
then performed using an adaptive system with a structure
similar to that in Figure 2. In this case, the reference and
the desired inputs to this filter are the results of the
respective convolutions. The wavelet estimator maintains
the same two principle assumptions as before. Given these
criteria, the adaptive system output produces the specular
part of the signal wavelet transform and the residual yields
an estimate of the resonant part of the wavelet transform.

4. TEST RESULTS

The adaptive estimation method was applied to the data
obtained from a submerged elastic target and an irregularly
shaped concrete chunk of similar size. The elastic target had
the form of a tapered, notched cylinder with flattened ends
and rivets and an aspect ratio of 4 to 1. The incident signal
was a wide-band linear FM with a time-bandwidth product of
TB=20. The signal was set to sweep over the mid-frequency
band. The target was insonified by a narrow-beam on the
order of the cylinder radius. The returns from each object
were collected over 360° in 5° increments to produce 72
data records of differing aspect angle per object. Note that

0° corresponds to broad-side incidence. The measurements
were performed under controlled operating and environmental
conditions. The adaptive system had 32 tap weights and the
initial conditions were P(0)=5000 I and W (0)=0. The
signal estimation was completed only after one pass over all
the samples of the backscattered signal. Figures 3a-d and
4a-d give the respective outputs of the adaptive system and

the error signals together with their spectra for 2259 aspect
angle, for the target and non-target. As can be seen in these
results, for the elastic target the output of the adaptive
system, which provides the estimate of the specular part,
has a broad-band spectrum while the error signal which
provides an estimate of the resonant part generally contains
one or more narrow-band components. For the non-target
anomaly, however, both the error and output signals were
relatively wide-band. Based upon this criterion, over 89%
of the cases were correctly identified. The remaining cases
were not clearly distinguishable owing to the sensitivity of
the adaptive system to strong subsequent specular returns
whose onsets arise too quickly for the weights to converge.

In the second set of experiments the entire object was
insonified for both the target and cement chunk. Broad-
beam insonification increased the number of subsequent
specular returns. Time-scale representations of the
transmitted and backscattered responses were computed.
Specular and resonant separation at each scale was performed
using the adaptive estimator. Figure 5 gives the estimate of
the resonant part for the respective returns from the elastic
target and the cement chunk where the time origin for each
scale is set to follow the slope of the linear FM transmit
signal in the time-scale plane. The processed target data
yielded a more localized concentration than did the processed
returns from the cement chunk. The outputs for two data
runs comprising different data sets was applied to an
automated testing algorithm. Decision criteria for automated
classification was based on one look and one feature. The
wavelet components were integrated over scale along the
linear FM slope and normalized and the ratio between
resonant and specular parts was computed. Both runs
comprised broadbeam data from 0° to 360° in 10° increments
and the cement chunk at arbitrary angles. Using a single
feature of the peak-to-width ratio for the processed curves,
84% correct classification was obtained from a simple
threshold detector. The results verify the important
conclusion that the adaptive estimation scheme is capable of
identifying narrow-band phenomena present in the returns
collected from targets and non-targets without requiring an
underlying model for the returns.
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Figure 5. Resonant part of the CWT for the acoustic return:
a) Elastic target b) Cement Chunk.

5. CONCLUSIONS

The development of an adaptive system for detection of
underwater targets from acoustic backscatter was presented in
this paper. The adaptive processing was shown to be an
effective method for detecting the presence of submerged
elastic targets both in time domain as well as time-scale
representation. A unique aspect of this method is that no
underlying model assumption is made about the elastic
return. The adaptive system is trained to provide an
estimate of the specular part which is highly correlated with
the incident input. This enables the extraction of the
resonant component at the error signal. The test results for
an elastic target and a non-target (concrete chunk) were
obtained which showed the success of this scheme in
isolating narrow-band phenomenon which discriminates the
targets from non-targets.
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