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ABSTRACT

In this paper, we address the problem of estimating
the components of superimposed exponentially decaying
signals. Usual estimation techniques, e.g. least
squares or eigenvalue and eigenvector based methods, are
not adequate for exponentionally decaying fluorescence
processes due to their rather simple signal modelling.
Therefore, we introduce a better suited parametric model
by exploiting the statistical properties of the exponentially
decaying emission of fluorescence photons (time dependent
Poisson statistics). Using this model maximum likelihood
estimates for the fluorescence intensity spectrum and the
decay parameters are derived. The performance of the
maximum likelihood estimates is compared with the least
squares estimates by means of simulations and real data
experiments. The results indicate the superiority of the
maximum likelihood estimates.

INTRODUCTION

Fluorescence spectroscopy is a powerful tool in analytical
chemistry. Large molecules, however, like polycyclic aro-
matic hydrocarbaons (PAH) for example, have broad fluo-
rescence spectra and the spectra of different PAH may over-
lap. In this case a second parameter is needed for identifi-
cation.

We perform time-resolved fluorescence measurements to
achieve a higher selectivity with respect to the different
PAH. In this case the fluorescence intensity spectrum and
the decay parameters of the fluorescence process are the
characteristic parameters for classifying PAH. Therefore,
the initial step in a classification procedure should be the
accurate estimation of these parameters for each compo-
nent.

We propose adequate parameter models for the time-
resolved spectrum taking into account a time-dependent
Poisson statistics for the emission of the fluorescence pho-
tons. Maximum likelihood estimates (MLE) are developed
on this basis for the fluorescence intensity spectrum and the
decay parameters.

By means of simulations the performance of the MLE is
compared to usual least squares estimates (LSE) which are

0-7803-2431-5/95 $4.00 © 1995 IEEE

only using deterministic decay curves embedded in (white
gaussian) noise for modelling the measurements. Finally,
the MLE is applied to measured time-resolved fluorescence
data.

DATA MODEL

For a certain wavelength of interest a fluorescence process
describes the emission of photons over time. In analogy to
the radioactive decay law the times at which photons are
detected can be interpreted as realizations of exponentially
distributed random variables.

Now, let R > r denote the number of possible and emit-
ted photons, respectively. After partitioning the obser-
vation intervall [0,T) in the sub-intervalls [nA, (n + 1)A)
(n =0,...,N — 1) the probability for observing a photon
in the nth intervall is
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Thus, the probability for counting z1,...,zxy—-; photons in
the intervalls {nA, (n +1)A) (n =0,..., N — 1) is given by

with
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Approximating the multinomial distribution by a Poisson
distribution, cf. Poissons theorem [4], we obtain
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where
pn = an =b exp (-'T%_'A—)

with

b=ra.

In practice usually several fairly independent fluorescence
processes are simultaneously excited. Supposing the num-
ber M of superimposed processes to be known, the number
of photons observed in the nth time intervall is

M

Yn = Z Tn,m,:

m=1

where zn,m represents the counts of the mth process in
the nth intervall. Since the sum of independent Poisson
distributed random variables is also Poisson distributed, we
obtain
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Furthermore, if the time spread of the detector is signifi-
cant the parameters v, (n =0,..., N — 1) should be rather
modeled by

o M
t
Vn = h(nA - 1t) b exp (——) dt.

Herein A(t) denotes the expected impulse response of the
detector. Empirical investigations have shown, that the
impulse response of a typical detector can be satisfactorily
described by

h(t) = B t* exp(—at) t>0,

where a is supposed to be known or estimated in advance.
Thus, after some cumbersome calculations the parameters

vn (r=0,...,N —1) can be reformulated to
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MAXIMUM LIKELIHOOD ESTIMATES

Now, the MLE can be constructed as follows. Taking the
logarithm of the counting density

fulyo,--syn) = P(Yo=yo,...,Yn =yn)
N-1
vin
= H Yn! exp (_V")y
n=0

we obtain the log likelihood function

N-1 Yn
L(Q.;I) = Z (yn log (Vn) - Vn — Zlog(l)) .
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After ignoring the constant term, changing the sign and
replacing vn by car na, where
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with
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we get the minimization criterion
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Minimization of g(ca,d,T) over cp without restrictions
yields the explicit solution
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Substituting the estimate éar for car and ignoring again a
constant term, we can determine the maximum likelihood
estimates of the decay parameter vector T and the remai-
ning vector of the amplitude ratios d by minimizing

N-1 z:N—l 7
Qd,r) = Z ynlog (——“;: ") .
n=0

EXPERIMENTAL RESULTS

The minimization of the criterion Q(d, ) requires a global
search and a local optimization technique. Therefore, the
convergence behavior and the robustness of several globa-
le and locale optimization methods have been investigated
empirically.

The performance of the MLE constructed above and the
LSE decribed in 2] and applied in [1] and [3] is compared
by means of monte carlo simulations. Fig.1 and Fig.2 show
the analysis results for simulated data supposing two equal-
ly strong fluorescent components with decay parameters of
10ns and 20ns, respectively.



The superiority of the MLE can be clearly observed as the
two clusters are not separated using the LSE algorithm. In
Fig.3 and Fig.4 the MLE for successively measured time-
resolved fluorescence data of a mixture of two PAH are
plotted. Furthermore, Fig.4 indicates that about 9000 snap-
shots (laser exitation pulses) are required to form three sa-
tisfactory contracted clusters. The clusters are due to mo-
nomere and excimere fluorescence of the two components.

CONLUDING REMARKS

For the estimation of time-resolved fluorescence spectra a
physically well motivated parametric model has been deve-
loped and the maximum likelihood principle has been ap-
plied. The MLE are obtained by an iterative optimization
procedure. Various global and local optimization techniques
have been empirically considered. The most convincing re-
sults are provided by combining the genetic algorithm for a
row global search with a local optimization procedure, e.g.
simplex algorithm or gradient based methods. Numerical
experiments with simulated and real data indicate that the
proposed maximum likelthood estimator has a higher re-
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Figure 1. Maximum likelihood intensity and decay parameter
estimates for 200 monte-carlo simulations.
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Figure 2. Least squares intensity and decay parameter estima-
tes for 200 monte-carlo simulations.
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Figure 3. MLE of the intensity and decay parameters for real
data (mixture of two PAH. 3000 snapshots).
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Figure 4. MLE of the intensity and decay parameters for real
data (mixture of two PAH, 9000 snapshots).
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