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ABSTRACT

It is often assumed that the photon arrival process
incident on the photodetector array in a scintillation
camera is Poisson, conditioned on the location and en-
ergy of the incident gamma-ray. A simple experiment,
in which the covariance between the sensor outputs is
empirically determined demonstrates that the observa-
tions are not independent conditioned merely on loca-
tion and energy. We assume that this lack of indepen-
dence arises from random parameters influencing the
Poisson intensity or photodetector responses. Because,
these responses can be difficult to either model or mea-
sure as a function of the nuisance parameters, we de-
velop two simple approximations to the ideal maximum
likelihood estimator for location and energy.

1. BACKGROUND

A scintillation camera measures the position and en-
ergy of incoming y-ray photons and is used in a variety
of applications ranging from 7-ray astronomy to nu-
clear medicine. Incident y-rays interact in a scintilla-
tion crystal to produce a weak light flash, which spreads
throughout the crystal and is subsequently converted
to a vector of electrical signals via an array of photode-
tectors (usually photomultipliers). From this vector,
both the x-y location and the energy of each incoming
y-ray can be estimated.

It is often assumed that the number of scintillation
photons impinging on each photodetector are Poisson
distributed conditioned on the x-y location and energy
of the v-ray. This idea naturally leads to the use of a
maximum likelihood estimator for the Poisson model
(1], viz.
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and where y = [41,...,ym]T are the photodetector
outputs (assuming noiseless gain), 8 = [x, A]7 (x being
the interaction position and A the incoming energy),
and s(8) = [51(9),...,5m(8)]T is the vector repre-
senting the expected photodetector output for-each 6.
Maximization is typically performed by solving the fol-
lowing equation for 6

Vs(6)diag™ (s(8))(y —s(8)) = 0, (1)

which can be accomplished in real time using special-
ized hardware [2].

A key assumption in the model is independence of
the noise in the photodetector outputs; however, a sim-
ple experiment in which the covariance matrix of the
sensor outputs is estimated empirically, demonstrates
that the signals are highly correlated, and thus not in-
dependent. A sample covariance matrix for one of our
systems is
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This lack of independence can arise in a variety of
ways: for example, it can be the result of a branching
process for generating the scintillation light (a cascade
of a random scaling and a Poisson process is described
in Case I below), or it can be the result of changes in
the shape of the response functions s(8) with depth-
of-interaction (Case II). We assume that the depen-
dencies are due to random parameters influencing the
response functions; and generally, the sensor responses
may actually depend upon one or more additional pa-
rameters. To correctly model the situation s(8) should
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be represented as s(8; w) with corresponding likelihood
function

M e—s:(Bw) 5;(0; w))¥:
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where w represents a random parameter. Ideally, it is
desirable to maximize this expression (which averages
over the nuisance parameters) with the choice of 8;
however, due to the presence of the expectation opera-
tor this task can be difficult—especially at rates greater
than 10° per second.

An alternative to maximizing (3) is to explicitly es-
timate w as a nuisance parameter using either ML or
MAP estimation. In particular, define the joint maxi-
mum a posteriori (JMAP) estimator as

M
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where f(w) is the prior density for w. Unfortunately,
the complete response functions s(8;w) can often be
-difficult to measure rendering this approach impracti-
cal.

2. APPROXIMATE ML ESTIMATORS

Because of the difficulty in measuring the complete re-
sponse functions, it is reasonable to explore simple ap-
proximations to the ML estimator for the pdf given
by (3). We consider two approximations: The first
is derived from a limiting case for the statistics of the
point-process incident on the photosensors and the sec-
ond from assuming gaussian statistics for the observed
photosensor outputs.

2.1. Approximation I

In the limit of low scintillation photon intensity (i.e.
Y_; 5i(0) small), the statistics of the photosensor obser-
vations, conditioned on the incident location and en-
ergy, become approximately Poisson-distributed with
mean 5(8) =' E,(s(8;w)). The corresponding esti-
mates 6 amr: under this assumption are solutions to

Vg(éAMLl)K;l(éAMLl)(y - §(éAMLl)) =0, (5)

where K71(6) =' diag™!(5(6)). We refer to estimates
satisfying (5) as AML1 estimates. This approxima-
tion has the advantage of only requiring knowledge of
the mean sensor outputs conditioned on 8, which are
straightforward to measure empirically. Given the na-
ture of the inherent assumptions, we might expect best
performance in the low-intensity regime.

2.2. Approximation IT

An alternative approximation is derived by assuming
the photosensor statistics are Gaussian-distributed with
log-likelihood

In £(y16) = ~3 (v ~ 5(6)) K5(8.)(y ~ 5(6) + C
where

Kg(go) = Ew[E(nylw’OO)]
- Ew[E(Y[w’90)]EW[E(yT|w’00)]

is the covariance of the sensor outputs at the true (but
unknown) 6@,. Forming the least-squares normal equa-
tions, and substituting K 2(9 amr2) for the unknown
K»(8,), gives

Vg(éAmnz)Kz_l(éAML:)(y - §(éAML2)) =0, (6)

which is solved to yield AML2 estimates éAML,. As
for the AML1 estimator, knowledge of the complete
response functions s(#;w) is not required, and both
§(0) and K () are simple to measure. Moreover, (6)
is only moderately more difficult to implement than
(5) requiring multiplication at each trial value-of by
a non-diagonal information matrix.

3. EXAMPLES

We present two brief examples comparing the perfor-
mance of AML1, AML2, and JMAP estimators. The
first demonstrates the equivalence of these estimators
for a particular response model; the second, the superi-
ority of AML2 over AML1 estimates for a case in which
the responses are strongly dependent on an unknown
v-ray depth-of-interaction.

Case I: Poisson process with random rate

For this example, assume the response functions can
be separated into a component depending only on -
ray energy and one depending only on position, i.e.,
s(0) = Ags(x) where g is an i.i.d. random scaling of
each event (additionally we assume g is non-negative
and bounded).! The cascade of any random scaling
with a Poisson process results in a covariance of the
form:

Ko([x, N]T) = Agdiag(s(x)) + Ao*(g)s(x)s” (x), (7)

1This approximates the actual case where it is highly likely
that the y-ray will undergo a photoelectric interaction with the
release of an energetic electron. This electron generates a ran-
dom number of secondary ionizations, each of which ultimately
produce a random number of scintillation photons.
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or arank-1 modification of the covariance for the purely
Poisson problem. Note that all entries are positive,
similar to (2).

It is straightforward to show that estimates result-
ing from the use of the AML1 and AML2 (egs. (5) and
(6), respectively) coincide for all observations y; i.e.,
the null spaces of the matrices

Vx,A(Ags(x) K1 ([x, A]T)

and
Vx A (Ags(x) K5 ([x, A7)

are identical for all [x,A]. This can be seen by using
the identity:

1
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and noting that for all admissible AML1 and AML2
estimates 117 (y — Ags(x)) = 0. Furthermore, these
estimators are equivalent to the JMAP estimator de-
fined in (4) if
Olnf(gly) _, _, dlnflelh) _

) 59 0.

These equivalences do not hold, however, if a prior den-
sity f(\) on y-ray energy is used to form MAP esti-
mates.

Case II: Change in response shape with depth

In practice, normally-incident 4-rays do not interact
in a single plane within the scintillation crystal but
rather at a random depth. The pdf for this depth of
interaction is given by

F(z]A) = d7H(A)em /4N, (8)

where z is the depth-of-interaction and d(}) is an energy-
dependent attenuation length. Unfortunately, the mean

sensor response usually depends on this interaction depth;

ie., s(8) = s(6;2).

To illustrate the relative performance of AML1 and
AML2 estimators for this application, consider the fol-
lowing example: A linear array of five photodetectors
measures the light output from a scintillation crystal,
and the shapes of their response functions vary sig-
nificantly with depth-of-interaction of the y-ray. Re-
sponse functions for various source locations are shown
for the minimum and maximum depths-of-interaction
in Fig. 1.

Results of applying the AML1 (*) and AML2 (o) es-
timators are shown in Figs. 2 and 3. Use of the AML1
estimator, which is often employed in practice because

of its low complexity, can lead to severe errors in esti-
mates of location (Fig. 2) and energy (Fig. 3) due to
both high variance and bias. Application of the AML2
estimator given by (6) results in a significant perfor-
mance improvement.

For the same response functions, results of apply-
ing the AML1 and AML2 estimators, as well as those
obtained using the JMAP estimator given by (4) are
shown in Figure 4. Results are plotted against varying
mean numbers of photons per scintillation pulse for a
fixed location and energy (x = 37 mm, A = 1). As a
practical lower bound for estimates produced by max-
imizing (3) over 8, we have also shown results for an
ML estimator in which the true depth-of-interaction
was supplied as a known parameter for each realiza-
tion. Each point represents 100 independent trials. At
low photon rates, all estimators perform nearly equiva-
lently in terms of mean-squared error. At higher rates,
however, the sub-optimality of AML] estimates is read-
ily apparent, as well as the excellent performance of the
AML2 estimator relative to the more complex JMAP
estimator and to the estimator in which the depth-of-
interaction was known a priori.

4. CONCLUSION

We have developed two approximations to the likeli-
hood function described by equation (3)—neither re-
quire full knowledge of the photodetector response func-
tions. Estimators based on the first approximation
are useful when either the light flash produced by a
v-ray interaction is extremely weak, or the shapes of
the photodetector responses do not vary significantly
with random (and unestimated) parameters. Estima-
tors based on the second approximation, which assumes
Gaussian photodetector statistics, perform extremely
well relative to the ideal estimator. Moreover, they are
only moderately more complex than estimators result-
ing from the first approximation.
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Figure 1: Mean sensor responses for an array of five
sensors as a function of v-ray interaction location at
two depths. Maximum depth: (o), Minimum depth:

(-)-
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Figure 2: RMS error in position as a function of lo-
cation for the AML1 and AML2 estimator. Note the
improved performance using the AML2 estimator.
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Figure 3: RMS error in energy estimates (true
energy=1) as a function of interaction location. AML2
significantly outperforms AMLI in this case also.
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Figure 4: RMS error in position estimates at location
32 mm (true energy=1) for various mean scintillation
pulse intensities. At the higher rates AML2 outper-
forms AML1, with performance close to that of the
JMAP estimator and the ML estimator having knowl-
edge of the depth-of-interaction for each v-ray.
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