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ABSTRACT

This paper considers the problem of seizure detection
in the neonate based on electroencephalogram (EEG)
data. It will be shown that by using a histologically
and biophysically justifiable model for the generation
of the EEG, the detection of electrographic seizure is
greatly improved. The model is presented along with
an estimator for the model parameters. Then a simple
seizure detection scheme based on the model parameter
estimates is suggested. It is shown that this scheme is
superior in performance to spectral analysis techniques
such as the periodogram when used to analyse both
simulated and real EEG data.

1. INTRODUCTION

The electroencephalogram (EEG) plays an important
role in the assessment of various neonatal or newborn
neurological disorders. Its current principal applica-
tion is in the diagnosis and prognosis of newborns with
seizures [1]. It is important to detect seizures and de-
termine their precise aetiology as early as possible in
order to administer the correct treatment and therapy.
This will ensure that further long term brain injury is
minimised. However, this is often difficult as the man-
ifestation of seizure within the EEG is highly variable.

Seizure is an episodic event with a definite begin-
ning and termination. The EEG during this period is
termed the ictal EEG. Due to its episodic nature, as-
sessment of the EEG often involves the examination of
the between seizure EEG, termed the interictal EEG.
Transient EEG behaviour such as spikes and sharp
waves are a specific indication of interictal EEG asso-
ciated with an epileptic process in children and adults.
Clancy [2] reports that the situation is far more com-
plex in neonates, where sharp EEG transients (SETS)
such as spikes and sharp waves, are present in neuro-
logically healthy newborns as well. This makes seizure
detection in the neonate a difficult task as SETS asso-
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ciated with normal EEG must be discriminated from
similar waveforms associated with the abnormal case.

In this paper a model based approach for the detec-
tion of seizure in the neonate is presented. The model
used is based on the histology and biophysics of a lo-
calised portion of the brain and as such its parame-
ters can be explicitly related to the mechanisms causing
seizure. A simple classification procedure based on two
of the model parameters is first suggested for seizure
detection. It will be shown that this method offers su-
perior detection performance of low frequency seizure,
when compared with spectral analysis techniques such
as the periodogram or autoregressive moving average
(ARMA) model based techniques.

2. NEONATAL SEIZURE

A seizure occurs when there is an excessive synchronous
discharge of neurons within the central nervous system
[1]. This manifestation in the EEG, known as electro-
graphic seizure, consists of paroxysmal events which
are best described as stereotyped repetitive waveforms
that evolve in amplitude and frequency before eventu-
ally decaying [2]. In contrast, the normal background
EEG consists of irregular activity with no clear period-
icity, and occasionally containing SETS (see Fig. 4).

The rate of repetition of the characteristic seizure
waveform is not constrained to any specific frequency
range. Similarly the amplitude of the signal may be
greater or smaller than that of the normal background
EEG. Because of this, a simple spectral amplitude and
frequency criterion for detection is inadequate, often
missing events and giving rise to false alarms. This
is confirmed in [3] where significant spectral overlap
between normal background EEG and seizure EEG was
reported.



3. THE EEG MODEL

The model for the generation of the EEG studied in this
paper is based on that originally proposed by Lopes
Da Silva et al [4]. It considers the neurophysiology
of a localised portion of the outer cortex of the brain.
Its parameters reflect the number of excitatory as well
as inhibitory neurons, their interconnectivity, and the
characteristics of the corresponding post-synaptic po-
tentials, as well as firing densities (see [4] for more de-
tails). The model considered in this paper, is shown in
Fig. 1.
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Figure 1. Model for seizure showing EEG, artifact
and noise.

In this model the notation e and ¢ refers to excita-
tory and inhibitory respectively. The EEG, Vg(t), is
given by a linear feedback system whose input driving
process p(t) is assumed to be stationary white Gaus-
sian noise (WGN) with zero mean and variance 6. The
post-synaptic potentials, h.(.) and h;(.), are modelled
by the difference of two decaying exponentials

he(t) = A(exp(—ait) —exp(—aqt))
hi(t) B (exp(—b1t) — exp(—bet)) (1)

where the a;’s and b;’s control the shape of the pulses.
The functions fg(.) and fr(.) are static threshold func-
tions which relate the average level of the membrane
potential to the pulse density. It is assumed they are in
their linear region of operation such that fg(V) = a1V
and f;(V) = a1 V. The o, and o; multipliers relate
the interconnectivity of the excitatory and inhibitory
neurons.

In this paper the original model as proposed in
[4] has been extended to account for seizure activity
through the use of a second input waveform s(t). Since
seizure involves the synchronous depolarisation of many
neurons, we have chosen to model the seizure by a pe-
riodic waveform driving the excitatory neurons within

the local mass of all neurons. The waveform suggested,
s(t), will be a saw-tooth waveform parametrised by its
peak-peak amplitude, period and DC level. One period
of the signal s(t) is given by

() = C2t/Ts+D—-1) 0<t<T,
10 otherwise

where T, is the period, C is the amplitude and D is
the DC level. Although other waveforms are equally
possible candidates, the saw-tooth was considered for
its simplicity and its applicability to modelling mass
depolarisation of neurons with slow repolarisation rate.

This scenario is hypothesised to occur during seizure.
In order to estimate the model parameters using the
technique to be described in the next section, the dis-
crete time spectrum of the EEG, Sy, v (1), is required.
Using pre-warping and the bilinear transform [5]

(2)
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where K; = a.0;AB/{ai1a.1), K2 = 0;ABCfay, T is
the sample period, H(s) = &=l 4 2 — s—(%—j:—f,-—) and
d(s) = (s +a1)(s+ a2)(s +b1)(s + b2).

Defining C, = Ac and Cy = a;ABC/a;; the model
parameter vector to be estimated is given by g =
[a17a'2,b11b27K1 Cl) CZyTsaD]'

The described EEG model is both histologically and
biophysically justifiable as well as parsimonious with its
use of parameters. The estimates of these parameter
values from the EEG will be used for seizure diagnosis.

4. ESTIMATION OF THE PARAMETERS

The aim is to estimate the EEG model parameters from
a record of EEG in order to detect for seizure. The
maximum likelihood (ML) approach is preferred [6].
However, the analytic expression for the log-likelihood
function of the model is extremely cumbersome, mak-
ing it difficult to explicitly derive the estimators. Al-
ternatively it is proposed to maximise an asymptoti-
cally close approximation to the log-likelihood function.
Known as Whittle’s approximation, this approximate
log-likelihood is more manageable and the estimator
derived from its maximum should retain all the advan-
tages of the ML estimator [6].

Suppose the observed EEG data are corrupted by
independent additive noise, n(t), such that y(t) = Vg(t)+
n(t), here n(t) is assumed to be stationary zero mean
WGN with variance 02. Given the observations Y =
[y(1),--- ,y(IN)] Whittle’s approximation to the log-
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likelihood function for Y is written:

ki3

[tog(2m)*{Svevi (M) + 07}

Iy ())
SVE Ve (’\) + 0121

ZN {Y}= "%
ldA (4)

where Iy (}) is the periodogram of Y.

Defining the parameter vector to be estimated as
8 = [a1,a3,b1,b2, K, C1,C2, Ty, D, 0], an approximate
ML estimate @ of the parameter vector 8 is then:

6= a.rgxenax(zN {Y;0},6 € ©) (5)

where © is the parameter space of physically reason-
able values. The maximisation will be achieved using
an iterative numerical optimization procedure based on
work by Powell [7].

5. EXPERIMENTS AND DISCUSSION

Monte Carlo simulations were performed where 2000
realisations of 512 points of simulated background EEG
data with no seizure component i.e. s(t) = 0, were
generated with a known parameter vector. The model
parameters were then estimated using the above ap-
proach. It was found that given a good initial parame-
ter vector, the method worked well. However when the
initial starting vector was a far from that correspond-
ing to the global maximum, the numerical maximisa-
tion routine often converged to a local maximum giving
poor results.

The method was next used to analyse two specific
records of 512 points of simulated EEG data. The con-
trol or normal EEG had the parameter vector

8. = (2,400, 15, 20,500, 30,0,0,0,0.1]

and contained no seizure, the seizure EEG had the pa-
rameter vector

8, = [2, 400, 15, 20, 500, 30, 900, 0.96, 0, 0.1].

The two time traces are displayed in Fig. 2. Tak-
ing into account the patient history, the EEG on other
channels as well as the surrounding EEG, the neurol-
ogist would make as objective a judgement as possible
of these two records.

Welch’s averaged periodogram with a window length
of 196 data points and an overlap of 66%, was then
used to analyse both records (Fig. 3). Although the
spectral peak associated with the seizure data has a
larger magnitude than that associated with the control,
without further analysis it is not possible to make an

objective distinction between the two. This is because
there is significant spectral overlap between the control
and seizure EEG. Spectral analysis using ARMA based
techniques would give similar results.

Using the model based method, the two records
were analysed. From the results in Table 1 it is sug-
gested that the magnitude of the ratio of the parame-
ters C and C) be used for detection. From the model,
it is to be expected that when C is large with respect
to C seizure is likely to be present. Since for the con-
trol, C2/C1 = 0, and for the seizure Co/C; = 32.5, it
may be concluded in the latter that the likelihood of
seizure having occurred is large.

Real records of EEG data recorded from a neonate
were then analysed. The first record (which was nor-
mal), was chosen to be the control, while the second
was chosen from a portion undergoing seizure as scored
by a trained neurologist (Fig. 4). Although clear repet-
itive waveforms are present in the seizure EEG, peri-
odogram analysis reveals very little of this when com-
pared with the control EEG (Fig. 5). The control EEG
is of a much larger magnitude than the seizure EEG,
and also there is significant spectral overlap.

Table 2. presents the results of analysing the data
using the method described above. Although conver-
gence of the maximisation routine to the global maxi-
mum could not be guaranteed, choosing multiple start-
ing points helps to achieve this. The results show that
for the control EEG C»/C; = 0.51 and for the seizure
record C2/C7 = 12.03. The large magnitude of the
latter ratio indicates the presence of seizure.

The suggested ratio of the two parameters, Cy and
Ci, for detection is suboptimal for classification but
was suggested as a first approach. Further research into
classification schemes based on the complete parameter
set is necessary to improve upon this.

6. CONCLUSIONS

In this paper a new approach to the analysis of the
neonatal EEG for seizure was presented. The technique
involved performing detection based on estimating the
parameters of a physiologically valid model.

It was shown that for low-frequency seizures this
approach was superior to spectral approaches such as
the periodogram. This is because the parameters from
the model can be explicitly related to the mechanisms
causing the seizure. The ratio of two of the model pa-
rameters was suggested as a first approach for seizure
detection. Further research is needed for optimal detec-
tion based on the complete model parameter set. This
method was presented for the case of neonatal EEG
but is equally applicable to adult EEG as well.
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K Seizure Neonatal EEQ

Parameter a1 az b ba
Control EEG 9 169.7 | 9.64 | 10.86 276
Seizure EEG | 3.52 197 14.7 | 19.832 428.3

Parameter Ci C, T, D o2
Control EEG | 37 0.0 0 0 0.0001 o T T A e em® T & %
Seizure EEG | 32 | 1041 | 0.98 | 0.12 | 0.0002

- Figure 4. Control and seizure EEG records.
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Table 1. Power Spactra

(solid) : Background EEG
...} : Seizure EEG

Parameter a1 az b ba K
Control EEG | 0.016 | 159.9 8.8 12.5 143.6
Seizure EEG | 3.358 10 15.7 | 1164.1 | 243.6

Parameter Ch C T, D oz
Control EEG | 18.8. 9.5 3.62 2.91 2e-5
Seizure EEG 15.3 | 183.8 | 1.419 | 0.024 0.18

5 10
Fraquency (Hz), ia=S0Hz

Table 2. Figure 5. Spectra of control and EEG records.
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