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ABSTRACT

The purpose of this paper is the presentation of the resuits
of a comparative study of the respective efficiency of three
parametric signal processing methods to detect abrupt spec-
tral changes by means of the detection of abrupt model
discontinuities, while they were applied to the very par-
ticular case of inspection of change in myoelectric activity
of surface electromyograms (E.M.G.). The studied surface
electromyograms are those of biceps brachii during a per-
turbed flexion-extension forearm movement in the horizon-
tal plane. After the description of the experimental device,
the problem position is then formally considered, and the
different used methods are briefly recalled. Finally, the re-
sults observed on a large set of trials are showed to light the
behaviour of each selected method before concluding on the
opportunity to use them to characterize some neuropathies.

1. INTRODUCTION

This paper investigates how various signal processing meth-
ods may characterize changes in myoelectric activity of sur-
face electromyograms ( E.M.G. ) when an external pertur-
bation appears. The final object is to detect the different
reflex activities. More particularly, the delay between the
external perturbation and the E.M.G. may inform about
some neuropathies [1]. The experimental device is designed
to study flexion-extension forearm movements in the hori-
zontal plane. We measure and record cinematic variables
and surface E.M.G. of biceps brachii. A torque motor is
mounted on the axis and allows perturbation of the on-
going motor act. The perturbation’s characteristics (ampli-
tude, duration, slope) are determined by the operator. The
compater, [.B.M. PC/AT, controls the torque motor and
records the signals. In the experiment described here, the
subject is asked to maintain a certain position stable against
an initial torque. During the experiment occurs a stepwose
torque increment. The subject is instructed to resist the
perturbation. The exact date of occurence and the level
of the stepwise perturbation of the torque increase are un-
known from the subject. This operation could be repeated
several times : see figure 1 for one example of recording.
Electromyograms have classically been analysed by simple
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signal processing methods [2]. These methods reach their
limits when we consider non-stationary signals. In our case,
the averaging of several trials leads to a distorsion of the sig-
nal components and tends to increase the burst width since
the subject’s delay response is not a deterministic one. It
seems, therefore, of great interest to characterize each in-
dividual signal and to perform then statistical analysis of
the parameters. In this paper, we propose three different
detectors that identify model discontinuities revealing the
reflex responses evoked by the perturbation. All of them
used model. So we present two modeling of the E.M.G. at
a low contraction level during the first part of the experi-
ments (the signal is stationary). One model is the classical
autoregressive A.R. or autoregressive with moving average
A.R.M.A. model but the other modelization is an original
one since it uses linear implicit state model, able to take
into account abrupt changes in the parameters [3]. For the
two classes, the parameter identification is performed on-
line by means of the well-known Extended Kalman Filter
(3], [4]. In the second step, after the modeling has been
proved available, it is possible to achieve the three different
real time detectors.

2. DETECTION BY ANALYSING SINGULAR
SYSTEM

This detector is based on the tracking of parameters in a
linear implicit model. The processed signal is supposed to
be well described by an autoregressive linear parametric
model (order p=8 [5]) in which we take into account the
parameters abrupt changes. The model is then written :

¥k + (@1 +81)¥k—1 + ... + (ap + 8p)¥k—p = Vk—1 (1)

where {a.} are the model parameters and s; is the possible
jump on the ith parameter. The modeling, fully described
in [3], leads to the following singular state model :

I, © [ A S
(¢ o] X =[5, p]xereu
n = [0..010...0]Xx

1932



where :
r 1 0 0
AC - '_. -‘ ’S - :
0 1 0 0
L—ap ... ... —a1 -1 ... =1
[ sp 0
D, = ,G =1[0...10...07
0 31

The detection procedure is then composed of two parts.
In the first one, we identify the a; parameters by means
of a new algorithm especially developped for the singular
system [6] and based on the Extended Kalman Filtering
(E.K.F.). The user’s parameters of E.K.F. are choosen such
as the jumps s; keep the zero value during this time. In
the second phase, we track the estimation of each s;, & =
E(si/measures). As the system is well identified with §;
values equal to zero, 3; keep the zero value up to a change
occurs. Formally, observing the measurement (yi,..., %),
we have to decide between two hypotheses :

For(1<k<lDHo¢ . 0=86;=(s:)=(0) (3)
Hy : 3 (1< LY/ (4)
For1<k<r—1 0=146 (5)

Forri<k<l 0=206,, ie Js; #0 (6)

We design the decision function g; (quadratic norm weighted
by the covariance matrix) :

g =0T (M

where & = E[697).

If gi becomes greater than a threshold A (a priori fixed by
the user), a change is decided.

In case of an A.R.M.A. model, assuming that only the A.R.
part is subjected to changes :

v+ (a1 +31)yk—1 + .+ (ap+ 5p)Uk—p =
Vg + C1Vk—3 + ... + CpUk—p (8)

The modeling leads to the following singular model :
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The detection procedure is the same scheme as the one pre-
viously exposed in the AR case. For the real case, the order

is (p, p)=(2, 2).

3. WHITENESS

The second detector tests the whiteness property of the sig-
nal innovation provided by the Kalman Filter {4].

Here again, as precise before, the processed signal is as-
sumed to be well described in the first part of the ex-
periment, by a classical autoregressive, order p=8, or au-
toregressive with moving average, order (p,q)=(2,2), linear
parametric model, which both write:

Yk = 30 + vk (10)

where :

vk is the processed signal

vk is a centered gaussian sequence of unknown variance o2
and in the A.R. case :

¢{ = (—yk-ly—yk—zw'w—yk—}’) (11)
8T = (a1,02,...,ap)7 (12)
and in the A.R.M.A. case :

Or = (=Yk—1, —Yk=21 ., —Yk=p, Vk=1, Vk—2, .-, Vk—g) (13)

0=(alya2y~")apyclyc2y-")CQ)T (14)

In practical way, eq. (13) is computed with :
B = (=Yke1) —Yk=2, -y ~Yh—p) €h—1, €k—2, ---, €k=gq) (15)
where the signal innovation € is defined by :

€k = Yk — ¢Eék/k (16)

9, /k denotes the current Kalman Filter identified model of
the signal.

The whiteness of the signal innovation is finally tested by
computing an ergodic estimation of the first point of its cor-
relation function. This estimation is given by the following
recursive equation :

pr = apr—1+ (1 — a)exer—1 (17)
where a is an constant factor (0< o <1).

If the absolute value of px becomes greater than a threshold
Ae (@ priori fixed), then the presence of a change is decided.

4. DISTANCE BETWEEN TWO UNCERTAIN
MODELS

The last detector uses a distance measure between two mod-
els identified within different length observation windows :
a reference large one which takes into account all or almost
all the past of the signal, and a test short one which only
contains the L past observations (L = 100). As a result,
if no changes occurs, the long-term windowed observations
lead to the same model than the short term ones.

Here the distance measure which is used, involves the un-
certainity in the knowledge of the compared models (just
estimated from finite lengh data sequences). This distance
measure, which can be seen as a generalisation of the Ita-
kura-Seito distance, is deduced from the optimal bayesian
decision rule, written in a supervised classification context
[7) and where the learning set is reduced to the studied sig-
nal.
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Noting Lo and Li the respective lengths of a long and a
short window (as decribed above), 8 and 8, the estimated
parameter vectors, Po and P; the estimation error variance-
covariance matrices, the distance measure is defined by [7]:

b= (O =BT+ PP B - b)) (19)

If di becomes greater than a threshold A, (a priori fixed),
then the presence of a change is decided.

5. RESPONSE TIME-DELAY

To study the reflex response with large time-delay, we ap-
ply the three detectors. The E.M.G. signal (5 sec., sampled
1Khz) is composed of several phases : the first one is unus-
able because of the transitory, the second one is necessary
for the identification (1500) before the change occurs, the
third phase is the human response followed by the volon-
tary response not studied here. The signals of which an
example is given on fig. 1 are then 2000 points length. In
the practical use, the detection procedure is achieved on
the [1350 1650] window in the following way : we know the
change time (r=1500) and the threshold varies. For the first
threshold which gives a response after the change time, the
time is recorded and we consider the next realisation. We
achieve histogramms which represent the number of reali-
sations with respect to the response time-delay.
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Figure 1 : Realisation of E.M.G. signal
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Figure 2 : Realisations of each detector
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Figure 8 : Histogram for g;
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Figure 4 : Histogram for whiteness
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Figure 5 : Histogram for uncertain models

In case of ARMA(2,2) :
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Figure 6 : Realisations of each detector
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Figure 7 : Histogram for g;,
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Figure 8 : Histogram for whiteness
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Figure 9 : Histogram for uncertain models

6. CONCLUSION

The impossibility to define a model after the abrupt changes
and consequently the difficulty to use different length of
windows justify the contribution of the singular model. The
comparison between the three detectors is achieved by means
of a statistical study.

The non-repetitivity of the response time-delay due to hu-
man factors oblige us to treat individually each signal. The-
refore the statistical are presented with the histogram. The
results show that something happens at about 60 ms but it’s
difficult to say precisely how long is the response time-delay
because it is composed of the detector and human response
time-delay. Therefore we plan to design a new protocol to
reduce the detection time-delay.

This study provides an over-view of which methods are
avalaible in the very particular case of the E.M.G. signal
abrupt changes detection. For example the distance con-
sidering two uncertain models seems less efficient than the
two other one. At last, we should say that there the solu-
tion is not unique and the expert may have an opinion with
different points of view.
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