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ABSTRACT

The human pupillary light reflex has long been
studied as a typical biological nonlinear system. We
have used a sinusoidal non-harmonic signal as the
input light stimulus and pupil diameter as the output of
the system. A recursive least square method is then
used to estimate the measured pupil diameter in terms
of the input light. With a good estimate, the underlying
dynamical behavior of the system would be captured by
the estimated parameters. Thus we modeled the
estimated parameters as ARIMA processes. Then the
residual noise associated with the ARIMA models was
examined and revealed that people with narcolepsy had
considerably lower sum-square-error than people
without this sleep disorder (controls). This method turns
outto be a relatively simple and fast test procedure for
narcolepsy discrimination.

1. Introduction

Narcolepsy is a grave sleeping disorder which
includes sleep attacks, hypnagogic hallucinations, sleep
paralysis, and cataplexy [1]. At onset it is extremely
difficult to diagnose [2] even though for years it has
been suspected that pupil activity is sensitive to the
presence of narcolepsy [3]. The accepted diagnostic test
for narcolepsy requires at least two weeks of patient
vigilance and an overnight sleep procedure. For this
reason and the purpose of early detection, a more
definitive and simpler test would be a significant
healthcare screen.

Pupillometry has been demonstrated to have
excellent potential for the study of alertness and
potential as a screening technique [4]. Pupil light reflex
(PLR) has been used for Input-Output modeling of the
system. For example Semmiow[5] suggested a
nonlinear servo mechanical control system, Usui et al.
[6], a homeomorphic model based on iris muscle
dynamics and Stanten et al. [7], a stochastic process in
a biological system. Apparently there are a few
nonlinearities {5] in the system which make the models
complicated and so would be the detection of
abnormalities from these models. The purpose of our
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model is to get significant measures from the simplest
PLR dynamics capable of discriminating sleep disorders.

2. Instrumentation

The pupillometer records pupil diameter responses
to various stimuli [8]. It consists of two infrared-sensitive
video cameras that record data from both eyes
simultaneously. Both cameras are mounted on a
horizontal bar and can be adjusted to match the
interpupillary distance of the subject. During data
collection in a quiet, dark room, the subject is instructed
to sit quietly in a comfortable chair, try to stay awake
without moving, and fixate straight ahead on the image
of a red dot. The PLR data is collected for 2 minutes
after 5 minutes of dark adaptation.

3. Pupil Light Reflex (PLR) Models

We want from our models a significant
measure of PLR noise cleansed of any PLR dynamics.
To elicit the noise measure we use linear, time-varying
parameter models since, theoretically, any
neurophysiological difference in noise between controls
and narcoleptic should originate in the model
parameters, the PLR stimulus being deterministic. Itis
possible that PLR noise also could be explained in terms
of the model residuals. However there is no
neurological basis for residual noise and empirically the
magnitude and autocorrelation of residual noise
depends very strongly on the number of parameters
estimated and consequently can be an unreliable
measure of noise.

Our generic PLR model has the form

m

P(t)-ag(t)d_ aft)s(t-j)-n() (1)

F1

in which
t = time measured in 62.5 ms increments
p(t) = pupil diameter in mm.
s(t) = pupil light stimulus in arbitrary intensity units.
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a(t) = ime varying PLR parameters
n(t) = residual disturbance term.

Model parameters are estimated using recursive least
squares (RLS) estimation [9] which minimizes the
criterion

_
JN-Y N0 2(t) (2)
&1

where A is an exponential weighing factor and n(t) is
from (1). The purpose of A is to allow the a(t)
parameters to follow any noise patterns these
parameters may have by weighing early, in-sample,
noise by an ever decreasing factor (typically 0 < A < 1).
The exact value of A used is determined by minimizing
J over A for the entire sample period, T =300. Further,
the order of the PLR models, the integer m in (1), is
determined by increasing m until there are no
decrements in J; as a ratio in m. J is distributed as
Snedecor’s F statistic when n(t) is normal.
Using increments of A\ = 0.05 it was found that
A = 0.6 was optimal and that the optimal m was 4 for
all data. A typical stimulus, s(t), pupil response, p(t), and
model estimate of p(t), p'(t), are shown in Figure 1.
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We turn to analysis and modeling of the
estimated a(t) parameters in order to extract a
discrimination measure of pupil noise. The
autocovariance functions of the estimated parameters
a(t),j=0,1,...,4 have functional forms which are typical
of stationary autoregressive (AR) processes [10]. We
use a uniform set of criteria specifying the form of the
AR models so as to give all models an unbiased
structure [11]. This means that every AR model noise
estimate results from the same criterion applied to every

set of a(t) estimated data. Our interest, of course, is in
the estimated variance of the parametric model noise
and its distribution. We summarize our noise findings in
the following section.

3.1. Maximum Entropy Tests

It is well known [12] that to be maximally
noncommittal regarding unobserved data the
assumption to make is that the unobserved data is from
a uniform distribution. Define e, ,i= 1, 2;..., 5 as the
residual sum of squares observations from a single
subject and assume these observations are from a
uniform distribution. Then the empirical sample
distribution is

5
P,=0-2§ 5[¢,0)-e,0)] ¢)

Where 3(.) is the impulse function. Note that the trace
of the residual, SSE covariance matrix , is just

5
tfz 610) (4)
Iy,

Consequently, the sample estimate of the trace
distribution is the 5-fold convolution of (3), that is,

p(t) =ps"p;".."Ps )

015 Figure 2.
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In Figure 2, p.(t) and p,(t) denote the estimate in
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(5) for the control and narcoleptic subjects respectively.
The estimated distributions in Figure 2 make it apparent
that the scatter as well as the mean for the controls
exceed those for the narcoleptic.

Let H, be the hypothesis that the test subject is
a narcoleptic against the alternative H, that the subject
is a control. We estimate from Figure 2 that

a=pr(type | error)=pr(4.0s t< 4.5/ H,)=0.024
B =pr(type Il error)=pr(3.5 st< 4.0/ H)=0.022

Based on 10 test subjects the trace has a very small
critical region and exhibits excellent power. The detailed
analysis of the power of our proposed tests and its
dependence on sample size is in the next section

3.2. Test of the Narcoleptic Hypothesis and Sample Size
Estimates

The modeling of the PLR data from a given
subject results in an estimate of the subject's ARIMA
model noise covariance matrix and the sum of the
diagonal elements of this matrix is the subject's sample
value trace, t,,. We illustrate here how this value is used
to test the hypotheses that the subject is in a certain
class. We use the maximum entropy discriminator and
assume that the empirical distributions p,(t) and p.(t)
shown in Figure 2, govern the populations from which t,
is drawn.

If H, is the hypothesis the subject is narcoleptic then
t, should have population distribution p,(f) while if the
alternate hypothesis H.is true, then t, should be from the
control distribution p.(f). To test H, against H., the
minimum discrimination statistic determines the critical
region from the probability statement

pr[log(p()/p.(t)) 2¢/H, ] s a

where a is the probability of a type | error, rejecting H,
when itis frue, and c is a threshold for adjusting the size
of a. As c varies from 1.4 to infinity, we estimate from
p.() and p.(t) of Figure 2 that t,, the critical value of the
trace t such thatif t,> t, then we reject H,, is given by
the graph in Figure 3. Type Il errors, accepting H, when
t, is actually from the control population, satisfy

pr[ log(p,(0/p.(t) )2c/ H. ] sB

The corresponding estimate of B versus t; is
shown in Figure 3. The narcoleptic hypothesis is
accepted for t, < t; and the exceptionally small B values,
based on a sample of only 10 subjects, confirm the most
powerful critical region property of this test [13]. We next
estimate the subject sample size n required to lower
bound the power of our discrimination test.

Figure 3.
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For any threshold ¢ we shall require B to be less than
0.05. To estimate n we assume the trace population
control distribution is approximated by p.(t) in Figure 2,
From Figure 2, if B<0.05 for all thresholds then F,
(4.5)=0.05 where F_is the trace cumulative and t,=4.5 is
the p=0.05 quantile of F.. Itis well known [14] that the
P" quantile has, under the assumption we have made,
an asymptotically normal distribution with mean t, and
variance P(1-P)/P %(t)). We take p, (4.5) from Figure 2.
P=0.05 and require any trace observation to be within
10% of t, with a probability of 0.95. The 2 standard
deviation point on the normal distribution implies

20p(1-p)/pl(t)]%%2.44/na0.45 , n-29.4

This suggests we take 30 subjects from each category
tested.

4. Summary

We have found that pupillary noise is a robust
discriminator between controls and narcoleptics. The
pupil light reflex is stimulated for 30 seconds and noise
estimates from subsequent models provide the test
statistics. Estimates predict that distributions from a
sample size of 30 subjects should provide a useful
narcoleptic screening test.
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