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ABSTRACT

For adaptive control of modern car engines the combus-
tion process has to be observed. Direct measurement
of cylinder pressure is costly and not suitable for im-
plementation. Therefore, we approximate the pressure
by appropriate filtering of one or more vibration sig-
nals that can be measured easily. It has been shown
that the pressure signal can be modelled as second or-
der cyclostationary (SOSC)[1]. The transfer charac-
teristic between pressure and vibration is time-varying
due to the motion of the piston during observation.
Therefore, for constant rotation speed we assume a lin-
ear periodic time—varying model. In this case, pressure
and vibration signals are jointly SOCS. Based on this
we formulate the optimum filter problem for our ap-
plication. Solutions for this problem are known from
the literature. We choose an appropriate one, adapt it
to our problem and estimate the filter parameters. A
real data experiment demonstrates the quality of this
estimation.

1. INTRODUCTION

Modern car engines have to be optimized to achieve
high efficiency, low fuel consumption and a low exhaust
level. This optimum depends on fuel quality, tempera-
ture, etc. Therefore, the optimization procedure has to
be adaptive, and it becomes neccessary to ’look inside
the engine’ by measuring relevant information about
the actual state of the engine. The best method to ob-
serve the combustion process is measurement of pres-
sure inside the combustion chamber. Knowledge of the
cylinder pressure as a function of the crank angle allows
conclusions about the actual power {low frequency part
of the signal) or about knock (high frequency part) [2],
[3]. Knock is an abnormal combustion that is charac-
terized by oszillations of the burnt gas. Frequent knock
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can lead to engine damage and has to be avoided. Un-
fortunately, direct measurement of the cylinder pres-
sure is costly and not suitable for practical implemen-
tation. Therefore, we try to approximate the pressure
signal based on observations of structural vibration sig-
nals which are often very noisy. In this paper we con-
centrate on filtering out the high frequency part of the
pressure signal that is caused by knock. The methods
presented here can also be applied to the low frequency
part of the signals, too.

2. PROBLEM

For system identification purposes we restrict our at-
tention to an engine running on a test bed with con-
stant rotation speed. One cylinder pressure sensor is
placed in the combustion chamber, P vibration sensors
are mounted on the surface of the engine. The sensor
output signals are filtered appropriately before they are
sampled. We use the same data as in [1], where we
have demonstrated that the sampled cylinder pressure
signal Y, can be modeled as second order cyclostation-
ary (SOCS). Due to the fact that for each cylinder of
our engine a combustion takes place every 2 rotations,
the cycle period is 2Nyot, where Niot is the number of
sampling intervals per rotation of the crankshaft.

Fig. 1 visualizes the basic idea concerning the re-
lationship between cylinder pressure and structural vi-
bration signals. It gets obvious that the transfer char-
acteristic depends on the position of the piston which
moves up and down during observation. Therefore,
the transfer characteristic depends on crank angle, and
we have to assume a time-varying system. For con-
stant rotation speed this system will be periodic time-
varying (PTV). The acoustic wave propagation mo-
tivates a linear model. The vibration sensor outputs
are disturbed by noise which may be stationary (gear,
drive-belt, wheels, etc.) or SOCS with period Ny or
2Nyt (valves, crankshaft, etc.). We assume the noise
to be uncorrelated with ¥, and to be SOCS with pe-
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Figure 1: Sectional drawing of engine for different pis-
ton positions

riod 2Nyot, which is the most general case and we use
the following linear, PTV model for the output of the
i’th vibration sensor:

o0
XP = > ¢On,m)¥nem + 2§ (1)

m=-0oo

Based on the following periodicities for a SOCS process
with period 2Nyt and a PTV system with period Nyo

ryy(n,m) = EY, Y, .
ryy (n + 2Nyot, m + 2Npoi) V n, m(2)
g(n’m) = g(n+NIOtrm) Vn,m (3)

it is easy to show that X,(,i),(i =1,...,P) are SOCS
with period 2Ny, too:

rxwx®(n,m) = rymxo (n+2Npoy, m+2Nyot) V n,m

Additionally, the cylinder pressure signal and the vi-
bration signals are jointly SOCS with period 2/N,,.
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Figure 2: Wiener-Filter problem

Fig. 2 demonstrates the problem that has to be solved.
We are looking for an optimum linear filter for Y, based
on X,(:),(i = 1,...,P). All processes are SOCS with
known period 2N, and the solution should be opti-
mum in the least squares sense, i.e. E(Y, —f’,,)"’ has to
be minimized.

3. SOLUTION

It 1s well known from the literature that a SOCS pro-
cess with period N can be converted to a wide sense
stationary (WSS) vector process with N components.
It has to be distinguished between the harmonic se-
ries representation (HSR)[4], where the components of
the vector process are the outputs of a filterbank driven
with the SOCS process and the translation series repre- -
sentation (TSR)[5], where shifted versions of the SOSC
process are subsampled to perform the vector process.
We use the second approach because it enables as a
time domain method to concentrate on time intervals
that are of interest for detection of knock (compare
3.2).

3.1. General Solution

Following [5] we vectorize and subsample each SOCS
process with respect to the cycle period

()
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with ng = 0 and n; = 2Ny, — 1 and compose a single
vibration vector

’ AN
X; = (xg) _..ng’)) A (5)
Our model
o0
Y, = Z Hi X -r +2Z, (6)
k=-oc0

now bases on WSS vector processes. Therefore, the
problem reduces to a standard Wiener filtering prob-
lem, and we have to solve

Ryx(n): i Hkax('n-—k). (7)

k=-~o00

3.2. Application—specific Solution

The amplitudes and phases of the oscillations caused
by knock are random due to the random nature of the
combustion process itself. Low stochastic dependencies
between different combustions and long cycle periods
(compared with acoustical propagation times) motivate
Rxx(n) = RXX5n and Ryx(n) = Ryx(sn. This sim-
plifies (7) and leads to the solution

H, = Hé = R}IXRYX& (8)
and the simplified model Y,, = HX,, + Z,..
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For our real data experiment the cycle period is
2Nrot = 3420. Only a limited interval (= 350 samples)
is of interest for knock detection. We can adapt our
solution to this limited interval by choosing ng and n,
in (4) appropriately.

Now we are able to estimate H = ﬁ.}}ﬁy x with

L-1 L-1
Rxx =Y xix; and Ryx =) yxi. (9)
1=0 I=0

These estimates are consistent for L — oo, but due
to a limited number of observed cycle periods L they
are not robust enough. Therefore, we modify the esti-
mates:

e rxx(n,n—k) varies slowly with n [1]. Therefore,
we implement some smoothing in the diagonal
direction of the covariance matrix estimates.

o We modify the estimate of Rxx by adding a di-
agonal matrix which corresponds to adding white
noise to the input process. This stabilizes the so-
lution by restricting the estimated transfer func-
tion mainly to those regions of the time—frequency
plane where knock oscillations occur.

Simulations have shown that, in contrast to a simulated
data experiment, the quality of the real data approxi-
mation can be further improved by limiting the length
of the impulse response. For this, the problem has to
be split up into n; —ng+1 subproblems of the principal
form given in (8). The covariance matrices are subma-
trices of those given in (8). This leads to a transfer
matrix H with diagonal structure and zero entries in
the upper right and lower left corner.

4. REAL DATA EXPERIMENT

4.1. Experimental Basis

For our experiments we take the same data as in [1].
We analyze 149 cycle periods of an engine running on a
test bed with 3500 rpm. For the parameter estimation
we take 100 cycle periods, 49 remaining combustions
are used to check the quality of the estimation by cal-
culating the relative mean spuare errors

149 -
q= 1=101 lly: — .}’1”2
= 149
El:lOl ||)/1||2

4.2, Optimization

HYI —5'1”2

and ¢ =
Iy [?

(10)

First of all we try to find an optimum for the design
parameters mentioned in the previous chapter. Numer-
ical examinations with different values for the three pa-
rameters smoothing length’, ’stabilization factor’ and
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Figure 3: Optimization of design parameters

"length of impulse response’ for a prediction based on
two vibration signals lead to the results given in Fig.
3. Obviously, the error function ¢ has a single mini-
mum. Fortunately, this minimum is ’flat’, i.e. small
variations of the design parameters do not lead to sig-
nificantly worse approximation results.

4.3. Quality of Approximation

For an estimation based on two vibration signals we
achieve a mean error of ¢ = 0.0857. Fig. 4 shows a
typical approximation with a relative mean square er-
ror of ¢(132) = 0.0893 and the worst approximation
with ¢(13%) = 0.358. Obviously, the prediction is usu-
ally very good. Even the worst estimation has small
errors within the interval 15° CA up to 50° CA, that
is relevant for detection of knock.

Another problem of interest is whether multi chan-
nel prediction is advantageous or not. Table 1 shows
resulting errors for prediction based on 1, 2 and 3 vi-
bration signals. Compared with the 1 channel exper-
iment, approximation quality significantly increases in
the 2 channel experiment and the results still get better
when working with 3 different vibration channels.

number of vibration signals
one | two | three
q 0.1623 0.0867 0.0591
max;(¢") 0.622 0.3582 0.2505

Table 1: Errors over number of vibration channels
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Figure 4: pressure(—) and estimated pressure (- -),
top: typical estimation, bottom: worst estimation

5. REDUCTION OF PARAMETER SPACE

For implementation reasons, the number of parameters
has to be reduced. Experiments demonstrate, that this
can be achieved by suitable parametric models that
include the time-variant structure of the engine [6].
In this paper we concentrate on a method based on
Singular Value Decomposition (SVD) of the estimated
transfer matrix H = U S V°, where S is a diagonal
matrix with the singular values A; sorted by size on its
diagonal. The SVD enables us to estimate the pressure
signal by using only the N largest singular values

N
Yi = Zu,-,\.-(v',-xl). (11)
i=1

For prediction based on one vibration signal the re-
sulting prediction error ¢ as a function of the number
N of singular values used for the estimation of the pres-
sure signal is plotted in Fig. 5. Obviously, it is suffi-
cient to work with less than 50 singular values which
reduces the number of parameters by more than 87 %
and the number of flops necessary for calculating the
approximation by more than 73 %.

6. CONCLUSIONS

In this paper we present a method for prediction of
cylinder pressure signals based on structural vibration
signals. Based on the cyclostationary model for these
signals and the PTV transfer characteristric we solve
the optimum filter problem and adapt the solution to

0 100 200 300 400 [] 20 40 60
Figure 5: Error q over the number of singular values
used for estimation

our application. The real data experiments demon-
strate the high quality of the approximation that can
be achieved.

Vibration sensors placed at different positions on
the engine contain supplementary information about
the combustion process. Our examinations demonstrate
that at least two vibration channels should be used. Fi-
nally we show, that the huge number of parameters can
be reduced by SVD of the estimated transfer function
without leading to significant worse prediction results.
This could be relevant in view of a real time implemen-
tation of the method presented in this paper.
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