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ABSTRACT

In this paper, we consider the signal-to-interference plus
noise ratio (SINR) performance of several beamforming al-
gorithms, taking particular account of the contribution of
sources correlated with the desired signal. In addition, we
derive an optimal method that mazimizes SINR by combin-
ing with the desired signal estimate any components of the
interference/multipaths that are correlated with it. To fa-
cilitate performance comparisons, we will only consider the
case where the signal directions of arrival (DOAs) are pre-
cisely known. The extension to unknown DOAs is straight-
forward. Our analysis includes the first order effects of ar-
ray calibration errors, and is verified by numerical simula-
tion.

1. INTRODUCTION

The problem of beamforming in situations where the
received signals are correlated has been studied by a
number of researchers. For example, it is well known
that the standard linearly constrained beamformers (e.g,
see [1]) exhibit a degree of signal cancellation in such
scenarios. A variety of ad hoc techniques have been
proposed to mitigate this effect, ranging from subtrac-
tive preprocessors to methods that decorrelate the de-
sired signal and interference. The general philosophy in
most approaches such as these is that the beamformer
weights must cancel the contributions from interfering
signals, even if they are correlated with the signal of
interest (SOI).

On the other hand, beamformer weights derived
from a minimum mean squared error (MMSE) criterion
(i.e., the Weiner solution) provide an estimate that is
as close as possible to the actual signal, regardless of
whether this nulls out the interferences or not. It makes
sense that if one of the interfering signals is 100% cor-
related with the SOI (due, for example, to multipath
propagation), performance can be improved by opti-
mally combining it with the “direct path” signal. This
is the approach taken in [2], where the MMSE weights

0-7803-2431-5/95 $4.00 © 1995 IEEE

1916

are approximated from the data for the special case of
a uniform linear array. A similar technique for gen-
eral array structures was presented in [3] (referred to
herein as the structured stochastic estimator, or SSE),
although it requires DOA estimates for the SOI and all
interferences.

One of the goals of this paper is the development
of an optimal method for estimating the SOI by com-
bining the contributions of correlated signals, but using
maximum SINR rather than MMSE as the performance
metric. In the course of this development, we analyze
the SINR performance of a number of other algorithms,
including SSE, standard least squares (LS), total least
squares (TLS) [4], and the principal components (PC)
method (e.g., [5, 6]). As in the MSE analysis of [7],
a simple array perturbation model is used to incor-
porate the effects of array calibration errors into the
analysis. The SINR performance of the LS algorithm
has been studied in [8], but contributions from signals
correlated with the SOI were not taken into account.
Before moving on the analysis, we briefly describe our
assumed data model in the next section.

2. DATA MODEL AND ASSUMPTIONS

Assume that d narrowband signals impinge on an array
of m sensors. The output of the array x(¢) is assumed
to be a superposition of the d signals corrupted by zero-
mean, spatially and temporally white noise n(t):
x(t) = A(@)s(t) +n(t) t=1,---,N

where A(8) = [a(6), - ,a(fy)] is the collection of
sensor responses parameterized by the DOAs 8, and
s(t) = [s1(t), -, s4(t)]7 is a vector containing the com-
plex envelope of all point sources, including the SOI
and any interferers. Without loss of generality, we as-
sume that sg(t) is the SOI, and s;(t),- -, sq—1(t) are
“interferers”. We separate the interference into two
components, one correlated with the desired signal, and



the other not:
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where £{s*(¢)s}(t)} = 0, r is defined as the first d — 1
rows of the last column of R,;,:
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" and o2 is the power of the SOIL The covariance of s (t)
is easily shown to be

R, =€ {st(t)s**(t)} =Rz —rr*/02. (3)

It is also convenient to separate the array response
into two parts, as follows:

A(6) = [A a(fa)] .

Because of various unavoidable errors (mutual coupling,
gain/phase perturbations, etc.), A(8) will be different
from the available array calibration model Ag(8):

A(8) = Ao(0) + A(6) .

Similarly, Ay and ag(8,) will denote the nominal cal-
ibrated values for A and a(f;), respectively. To com-
pare in a rough sense the effects of such calibration
errors, we will assume in our analysis that the columns
of the perturbation matrix A are random with zero
mean and second-order moments

E{4(0:)a"(9,)} = 0216 4)
£{a6:)a’(9;)} =0, (5)

where §; ; is the Kronecker delta.

3. SINR ANALYSIS

For a given set of beamformer weights w, the SOI es-
timate can be written as

34(t) = w*x(t)
=w* (;%Ar + a(Gd)) s4(t)

+w*Ast(t) + w'n(t).  (6)

The estimate §4(t) can thus be decomposed into the
following three components:

¢ signal component

cs = w (:—zAr + a(Bd)) sat), (7
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¢ interference component

c; =w*Ast(t), (8)

e noise component

cy =w*n(t). (9)

The SINR then is defined to be

Elles]l?

SINR = :
Ellerll® + Ellen|?

(10)

where €||cs)|?, £llcr]l?, and Eljen]|? are respectively
the power of desired signal, interference, and noise in
54(t). Note that the expectation is also taken with re-
spect to any random array errors present, such as those
in (4)-(5). The SINR performance of any given beam-
forming algorithm may be determined by substituting
the appropriate w into (7)-(9), and then evaluating the
expectations in (10).

3.1. A Comparison of LS and TLS

As an example of the insight that can be gained from
such an analysis, we compare the SINR performance of
the LS and TLS beamformers.

It is shown in (8] that the LS weight vector for the
d®* signal may be written as

Wis = Pjoado(azon-'oado)_l R (11)

where Pz =1 — Ag(AjAo) 'Aj. Substituting (11)
into (7)-(9), it can be shown that

Ellcs|i* = Nwis [AoRgAf + o2Tr(Ry)I] w5 (12)

Ellesll® = Nwi; [AoRy A + 0l Tr(R;)I] wes (13)

2
Now (e

Ellen® = No2w! wys = ——2—
lexll noLs LS azoPi;oado

After some algebraic manipulation, the LS output SINR
is shown to be

2 L 2
o325, P% ag + ol Tr(Rq)

SINR,s = o2Tr(RL) + o2

It is shown in [4, 9] that for large NV, the TLS beam-
former yields

8725(t) = (AJPAaAQ) "AJP 4 [As(t) + n(t)] .
To first order

AiPAAg = AjAg — AJPLA = ALAy,



and thus
Sros(t) ~ AJAs(t) + AlPan(t)

where AE’, = (AJAo)1A}. Notice that the first term is
the same as LS. Hence, the TLS signal and interference
power are the same as that of LS in (12)-(13). To obtain
the noise power, we observe that since

AJP4 = (AJA0)TIAS ~ (AjA0)T'AGPS

~ (AjA0)~ A7 + (AjA0)TATPY,

and
* -1 _ 1
(AgAp)~' = WX
- * - _1 - x T t* -
(A3A0)" a3Pk asw + Afamaj, Al —Alag
—ajA]’ 1 ,
the TLS noise component is given by
1 * Xk « At*i *
cNy ¥ ——————— [ado + ag — adoAg A ] Pﬁon(t) .

T a% L
az Pz ad

The associated noise power is thus
2 __ 2 1
Ellen|* = No, [W +
oa(m — d)[aj Ac(AjAs)2A%ag, + 1]
(azoPi{o aqo)?

(15)
Compared to (14), (15) has an extra positive term.
Hence, although TLS attempts to take the array er-
rors into account in a reasonable way, it yields a lower
output SINR than LS. The inferior performance of TLS
relative to LS is also shown using the MSE performance
metric in (7, 9]. This is very interesting especially in
light of other work which indicates just the opposite.
For example, in {10] it is shown that for linear equations
of the form AyS = X where the errors on Ay and X are
independent and identically distributed, TLS asymp-
totically outperforms LS when m > N. However, for
the problem we are considering, the relationship is just
the opposite: N > m. Whereas the number of param-
eters to be estimated remains fixed in the analysis of
[10], here this number is asymptotically growing.

The analysis of other algorithms such as SSE and
PC are somewhat more involved, primarily because
their weight vectors depend on data-derived random
quantities even in the known DOA case. The perfor-
mance of these algorithms is investigated in [11], where
among other results it is shown that the PC method is
very sensitive to source correlation.

3.2. A Maximum SINR Beamformer

We turn now to the question of choosing a set of weights
that maximize SINR, as defined in (10). If we treat w
as a deterministic quantity, substituting (7)-(9) into (10)
and using the simple array error model of (4)-(5) yields

w* [AgR4A;} + o2Tr(Ry)I] w

w* [BoRLBY + (02Tr(RL) + o2)I]w ’
(16)

SINR =

where Ry is defined as

1 *
== IT T
Rd=[ T4 :I .
* 2

The optimal weight vector that maximizes SINR is thus
the eigenvector that corresponds to the largest eigen-
value Amax of the following generalized eigendecompo-
sition:

[AoRdAS + o;jTr(Rd)IJ Wopr =

/\max [AOR.;I:;AS + (UZTI(R;LS) + 0'12;)1] Worr -
(17)
and the resulting SINR is given by

SINRorr = Amax - (18)

Of course, the quantities Ag, Ry, 02, and R used
above are not known a priori, and consequently must
be estimated from the data. This is easily done given
the DOAs or estimates of them, and is a standard pro-
cedure in all DF-based beamforming algorithms like
LCMV, LS, etc. The performance advantage of the op-
timal method is demonstrated in the next section by
means of some simulation examples.

4. SIMULATION EXAMPLES

In our first example, we consider a case where two
equal-powered uncorrelated random gaussian signals
with correlation coeflicient p = 0.9 impinge on a 6-
sensor uniform linear array (ULA) with an SNR of
10dB. Zero-mean white gaussian noise was assumed.
The DOA of the first signal was fixed at 0°. The DOA
of the second signal was varied between 2° and 20°, and
the DOAs of both signals were assumed known. The
array response was perturbed according to (4)-(5), with
oo = 0.2. A total of 100 trials were conducted at each
DOA separation with 500 snapshots per trial, and the
resulting SINR for PC, LS, TLS, SSE, and the optimal
method are plotted in Figure 1. Figure 1 shows that
the optimal method and SSE yield the highest SINR
among all the methods, with the optimal method per-
forming slightly better. The PC method is very sensi-
tive to source correlation, and has a very low output
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SINR at every DOA separation. The output SINR of
LS is about 9dB less than the optimal method and
about 3dB higher than TLS at a DOA separation of
2°. Note that the difference between all the algorithms
except PC becomes negligible as the DOA separation
becomes larger.
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Figure 1: SINR Performance of Various Beamforming
Methods vs. DOA Separation; p = 0.9, Known DOAs
and Random Signals.

Our second example considers a two-ray multipath
channel where the impulse response from the transmit-
ter to the reference antenna is given by

p(n) +0.9e~7"2p(n) ,

and where p(n) is a Nyquist-shaped pulse with 65%
excess bandwidth truncated to six symbol periods. A
BPSK signal with 10dB SNR passes through this chan-
nel and is sampled twice per symbol at the array. The
DOA of the main path (the one with unity gain) is fixed
at 0° and the DOA of the multipath is varied between
5° and 20°. The array response was perturbed accord-
ing to (4)-(5), with o, = 0.2, and the DOAs were esti-
mated using the method described in [12]. The SINR
of LS, SSE, and the optimal method based on an aver-
age of 250 trials at each simulation point is plotted in
Figure 2. The improvement in performance offered by
the optimal approach is clearly evident in this example,
and is as much as 3-4 dB in the difficult cases.
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Figure 2: SINR Performance of SSE, LS, and Opti-
mal Method vs. DOA Separation; Unknown DOAs and
BPSK Signals.
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