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ABSTRACT

This paper develops a calibration procedure for
gain and phase imbalances in quadrature receivers.
Quadrature demodulation has many applications in
communications and array processing.
Frequently, the output of the in-phase (I) and
quadrature (QQ) channels are considered the real and
imaginary parts, respectively, of a complex
random process which belongs to the Goodman
class. Mismatch in the gain and phase of the I and
Q channels results in a departure from this
statistical model and a degradation in the
performance of subsequent signal processing
algorithms. The calibration algorithm presented in
this paper estimates the relative imbalance between
the I and Q channels, based on data from a
sinusoid of known frequency but unknown
amplitude and phase.

1. INTRODUCTION

Quadrature receivers have many applications in
communications and signal processing. If the
responses of the in-phase (I) and quadrature (Q)
channels of the receiver are unmatched, the
subsequent signal processing algorithms will not
achieve their theoretical performance capabilities.
This type of non-ideality has received only slight
attention in the signal and array processing
literature, yet the impact on performance can be
significant. Methods are needed for calibrating
each quadrature receiver and then, in the array
processing case, to calibrate the overall array.
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We present new results for the calibration of
quadrature receivers, using input signals with
unknown parameters. This work represents an
extension of earlier work on this problem {1] in
that we consider the receiver frequency response
over a wide range of frequencies different from the
local oscillator (LO) frequency and both gain and
phase imbalances are considered, not just gain.
This work is also similar to the calibration
approach in [2]. Here, it is shown that, with an
input sinusoid of known frequency not equal to the
LO frequency, but unknown amplitude and phase,
it is possible to match the in-phase (I) and
quadrature (Q) channels of the receiver at that
frequency, although it is not possible to determine
the absolute frequency response of either channel.

The significance of this calibration problem
arises from the use of quadrature receivers in
statistical array processing applications, and the
ubiquitous but often unstated assumption that
receiver outputs, considered as the real and
imaginary parts of a complex stochastic process,
are subject to a particular subclass of the Gaussian
distribution described by Goodman [3] which we
refer to as the Goodman class. An uncalibrated
receiver with unmatched responses in the I and Q
channels will cause a departure from this statistical
model and potential breakdown of subsequent
signal processing algorithms. Furthermore, when
imbalances are present in the I and Q branches, no
longer are the direction vectors independent of the
relative phase difference between the local
oscillator and the received passband signal [1], and
therefore direction vectors are not unique for a
specific direction-of-arrival.

After this introduction, the next section discusses
the model for a non-ideal quadrature receiver. The
third section formulates the calibration algorithm.
The fourth section illustrates the effectiveness of
the calibration procedure in a noisy environment.
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The concluding section discusses the results and
suggests future research in this area.

2. QUADRATURE RECEIVER MODEL

Consider the model for a quadrature receiver
shown in Fig. 1. The input test signal is a

sinusoid of known carrier frequency w, (rad/sec)

and unknown amplitude and phase C and v,
respectively. This signal is mixed with the
quadrature outputs of the LO; these have known

frequency wo and unknown amplitudes G and
G,, and phases ¢ and ¢,. In the ideal case

G1=Gy=1and ¢;1=¢,=0. A and B are linear
time-invariant (LTI) systems which model
primarily the lowpass filter that eliminates the sum-
frequency components at the mixer outputs, but
which can be used also to model other gain and
phase discrepancies in the two channels. Our
interest is in quantifying the receiver behavior at

the difference frequency ; = @ - @,.
Define the responses of A and B, at frequency

®1, as

A(w)) = ael® (1a)

B(w;) = be/P (1b)
Ideally, a=b and a=P so that the channels are
identical. In hardware, matching may be difficult
to achieve, especially for a large range of
frequencies of interest. Assume further that the
response of both systems at the sum frequency

. + W, is identically zero. Then straightforward
trigonometry shows that the output signals are
given by

x(t) = 3 CGracos(@yr+y-01+0)  (2a)

Y1) =3 CGobsin(@r+y-02+B) . (2b)

The next section uses this model of the I and Q
outputs to a sinusoidal input, to estimate the
relative gain and phase imbalances.

input

— X(t)

P

— ¥(t)

LO

Fig. 1. Quadrature Receiver Model

3. CALIBRATION ALGORITHM

It is clear from inspection of (2) that separate
determination of the eight unknown receiver
parameters is not possible from observation of x(t)
and y(z). However, since the goal is determination
of the overall receiver response, we can proceed
by absorbing the LO gain and phase imperfections
into the model for A and B; this leads to a

simplified model in which G1 =G2=1,9;=¢ =
0, and

x(t) = % Cacos(®yt+y+a) (3a)

y(1) = 2 Chsin(w1+y+B) . (3b)

Suppose that we have observations of x(¢) and
¥(t) over the finite interval [0,7], and that T is an
integer multiple of the fundamental period

T1 =2n/®w1. Then we can obtain the quantities

T

xp=+i Of x(t)cos(,2)d (42)
T

x=-% 0[ x(t)sin(e H)dt (4b)
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T
yr=+x d[ y(#)sin(eA)dt (4c)
- %Oj y(t)cos(wd . (4d)

In actual implementation this mlght be
accomplished by downstream digital processmg of
samples of x(¢) and y(z). Note that in effect we
are proposing quadrature detection of x(t) and y(z)

at the frequency 1. Define the complex quantities

X =x +jx; (5a)

Y=y +jy . (5b)
Then we have

X= %Caef(‘i’*‘“) (6a)

Y= 3Cb¥P (6b)

Clearly the absolute response parameters a, b, o,

and B cannot be individually determined;
however, the relative response is easily obtained:

5
a

=

(7a)

(B-0)2 = (arg(Y) - arg(X))oy . (7b)
From this information, either channel can be
corrected so that it matches the other.

Note that this leaves still an overall complex
receiver response unknown. However, this
procedure ensures that the receiver outputs will be
Goodman distributed and thus can be modeled as a
complex Goodman input multiplied by a single
complex gain. Determination of this complex
gain, or rather the relative complex gains across an
array of quadrature receivers, is the co-channel
gain and phase estimation problem, which is the
subject of [4], [5], and other papers in array
calibration cited therein.

Before going onto a simulation example, a brief
discussion is given regarding the calibration when
zero-mean, finite power, wide-sense stationary,
noise is present in the channels of the receiver.
There are a number of locations in the receiver
where noise may be present. Ambient and
electronic noise may be present at the input in
addition to the test input, additive electronic noise
may be present in the local oscillator output, and
additive electronic noise may be present in the I
and Q channels after demodulation. Most likely
the most significant noise component is the noise
at the input which is amplified by all stages of the
receiver system. It can be shown that the estimates
of X and Y from (5) are unbiased and consistent
for any or all of these noise situations. Therefore,
as the observation time T increases the estimates of
X and Y approach their true values.

4. SIMULATION EXAMPLE

Two simulation examples are given to illustrate
the calibration algorithm performance under noisy
calibration conditions. For both simulations
wide-sense stationary noise is present at the input.

At a fixed SNR (signal-to-noise ratio) the
variance of x_ is examined as a function of T (data
observation time). One hundred trials were used
for each value of T. Fig. 2 shows the estimated
variance as a function of T on a log-log plot. The
relationship is linear with a slope of one illustrating
that the variance is inversely proportional to T.
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Fig. 2. Variance of the estimate of x, vs.
observation time.
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The second simulation demonstrates the
calibration algorithm for a number of trials with
T=30T; and an SNR of 10 dB at the output of the
quadrature receiver. The actual relative gain error
is 0.9502 and the relative phase error is 6.013
degrees. Fig. 3 shows the estimate of the relative
gain error, b/a, while Fig. 4 shows the estimate of

the relative phase error, (B-ot)y, for twenty trials.
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Fig. 3. Estimated relative gain error for 20 trials.
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Fig. 4. Estimated relative phase error for 20 trials.

5. CONCLUSION

This paper investigated calibration of quadrature
receiver gain and phase errors. An important point
made by the paper is that the complex data model
frequently used for the quadrature receiver output
is invalid if unmatched errors exist in the I and Q
channels. The relative gain and phase error for a
particular frequency can be computed from the I
and Q channel outputs given a sinusoidal input of
unknown amplitude and phase but known
frequency, different from the local oscillator
frequency. Knowing the relative errors, either
channel can be compensated to match the other.
Calibrating the receiver insures that the complex
output data representation belongs to the Goodman
class. In the future a more detailed statistical
analysis of the calibration approach in a noisy
environment may be performed. This paper
represents the start of an investigation of the
calibration of quadrature receivers.
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