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ABSTRACT

For an airborne radar array, beamforming and detection
are problems in both space and time. To null clutter, it is
necessary to exploit both dimensions, and to do so optimally
requires knowledge of the full space-time covariance matrix
and the array steering vectors. This paper derives an Ex-
pectation-Maximization (EM) algorithm for the estimation
of full space-time covariance matrices while simultaneously
estimating array steering vectors. The EM approach it-
erates between estimating the spatial steering vectors and
power associated with clutter scattering from different an-
gles and the formation of a full space-time covariance ma-
trix, The final result is an estimate of the set of array
steering vectors and an estimate of the space-time covari-
ance matrix. In practice, one would never need to form this
covariance since all calculations could be performed using
the SVD of the appropriately weighted clutter space-time
steering vector matrix. The technique is capable of provid-
ing a positive definite estimate of the space-time covariance
and complete array calibration with only a single space-time
data sample.

1. INTRODUCTION

For an airborne radar array with multiple pulses, beam-
forming and detection are problems in both space and
time [1, 2]. The radar returns from a target are functions
of velocity and position, with a Doppler frequency based
upon the scattering objects velocity relative to the aircraft.
Clutter returns share this space-time relationship but the
Doppler frequency is a function of only platform velocity
and altitude and the clutter asimuth. on altitude can be
neglected. For an adaptive radar to detect target returns
while rejecting clutter, both the spatial and temporal di-
mensions must be exploited.

In an airborne adaptive radar array, there are two major
problems that we would like to address. The first is that of
poor array calibration. Flexure of the airframe and mutual
coupling between antenna elements can induce uncertainties
in the array calibration. The second problem is estimating
a space-time clutter covariance matrix. Because of the mo-
tion of the aircraft, uncertainties of the array calibration
and different clutter environments, the space-time clutter
covariance is unknown and can change over a time period
on the order of a few coherent processing intervals. The full
dimension of the space-time adaptive problem is the number
of spatial elements times the number of pulses which can be
very large and can make it impossible to obtain sufficient
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training samples for estimating a full space-time covariance
matrix using unstructured techniques.

There have been algorithms proposed that solve in varied
ways either the array calibration problem or the covariance
estimation problem. Steinberg [3] proposed a technique for
calibrating an array when a dominate scatterer can be found
in the data, and Attia [4] has proposed a technique making
use of the spatial correlation properties of the radar clutter.
The first of these is not applicable if a dominate scatterer
can not be found such as might occur over water, and the
second would not be applicable if the complex gain of each
of the array elements varies independently as a function of
azimuth.

Fuhrmann [5] and Robey [6] have shown that, with knowl-
edge of the array manifold, high performance adaptive de-
tection and beamforming can be accomplished by modeling
the interference environment even when the number of sam-
ples used to estimate the covariance matrix are small. The
success of these structured covariance techniques has led
us to explore simultaneously calibrating the antenna array
while estimating the clutter covariance matrix.

This paper explores an Expectation-Maximization (EM)
algorithm (7] for the estimation of full space-time covari-
ance matrices for airborne radar applications while simul-
taneously determining the radar array calibration. This
algorithm exploits the Doppler phase progression that clut-
ter sources incur relative to the moving platform and the
comparatively low rank of the clutter subspace in the full
space-time covariance.

2. THEORY

In this section we will explore the use of the EM algorithm
for determining the space-time clutter subspace. We will
use the following assumptions:

o Complex Gaussian independent identically distributed
gero-mean receiver noise, both spatially and tempo-
rally, with known variance. Jamming is neglected for
simplicity in this paper. To accommodate jamming
and spatially colored noise, the interference covariance
may be estimated before the coherent processing inter-
val. Using this covariance, a whitening transformation
can be calculated and the data transformed into this
whitened space. All the processing outlined in this pa-
per and any further processing of the data can take
place in this whitened space.

® A clutter distribution such that the characteristics of
the clutter scattering shows up as unknown parameters
in the likelihood equation.

o A spatial array of uniformly polarized sensors.

1896



o Clutter signals of uniform polarization: the calibration
is in the polarization plane of the clutter signals.

o Narrow band radar, so array dispersion caused by the
propagation delay across the array can be neglected.

e K complex ii.d. zero-mean samples (no target sig-
nals are present). These possibly multiple samples can
come, for example, from nearby range gates where the
clutter is expected to be homogeneous.

o High PRF radar so that clutter is unambiguous in
Doppler frequency, or a transmit beam shape such that
ambiguous clutter scatterers are sufficiently suppressed
below the receiver noise level. Backlobes of the trans-
mit beam are also assumed to be suitably suppressed.

o All vectors are assumed to be unit 2-norm column vec-
tors (unless otherwise noted).

¢ Internal clutter motion is assumed to be negligible.

Let us consider a pulsed Doppler radar system with N an-
tenna elements and M pulses. The Doppler frequency fa(8)
of a clutter patch at angle 8 is due to the apparent motion of
the clutter relative to the moving airborne platform. This
frequency is dependent on the azimuth of the clutter as

fu(8) = 3 cond ()

where v is the velocity of the radar platform, A is the wave-
length of the radar carrier frequency, and 6 is the angle of
the clutter patch relative to the velocity vector of the radar
platform. We can construct a full NM-clement space-time
steering vector V(8) for the clutter patch at angle 8 as

V(6)=d(6) ® v(9) (2)
where d(6) = 717‘ [ ei3%14(8) &II™M14(8) ]T is the
Doppler phase vector for clutter from angle 6, v(8) is the
spatial steering vector to the clutter patch, and ® repre-

sents the Kronecker product such that we could alterna-
tively write V(0) as

. e1"14(0)y(g)
V(o) = — . (3)
VM ei3"M1a(0)y ()

For a given range, the space-time clutter return is the inte- .

gral over the angular space ©
Xe(p) = / a(8, p)v(8)d9, (4)
)

where a(0, p) is the amplitude of the clutter return from
angle 6 and range p. We will assume that the ranges of the
clutter patches considered are close enough to ignore any
possible range dependence on the steering vectors or the
Doppler frequency coming from specific azsimuths.

The data received by the array will be denoted x and is

x=%(p)+n (5)

with E {nn"} = 0* 1 @I = 0?I. We will have K of these
data samples. The space-time covariance of these received
data vectors is

R:(p) =1 + L la(8, p)|? V()% (8)d8, (6)

where o is the noise which is assumed to be independent
from element to element and pulse to pulse. Due to the lim-
ited spatial and temporal resolution, the continuous clutter
distribution can be modeled as a discrete summation of clut-
ter patches. The covariance matrix can then be rewritten
as

L
Re(p) =01+ ) _ |a(8, o)/ %:7F, (1)

i=1

where V; is shorthand for v(8;).

3. DERIVATION OF ESTIMATOR

We will use the Expectation-Maximization (EM) algo-
rithm [8] to perform the estimation of the full space-time
covariance. The EM algorithm consists of the following two
steps:

1. E-step: Given a complete data set Y, that if known
would uniquely determine the observed data, compute
E{lca(Y;©)|Z,0%}. 1.4(Y;O) here is the complete
data log-likelihood and @7 is the parameter estimates
at step p.

2. M-step: Find @' = argmaxgE {l.4(Y; ©)|Z, ©7).
These are then the parameter estimates at stepp+1. -

For our EM implementation we choose for the complete
data space the full space-time signal from each patch of
clutter in the presence of a small additive noise component.
The rational for choosing this model as the complete data
space (besides the physical significance) is that if we had
such data the estimation of the spatial steering vector to
cach patch and the associated clutter power for that patch
it would be a simple maximum likelihood problem to find
the full space-time covariance matrix. Instead, we estimate
the hypothetical complete data statistics from incomplete
data measurements. The complete data is:

{yir} 1 yie = Visir + nyin = (di ® vi) six + nyis,  (8)

with the following characteristics:

d;, the Doppler progression, is known for any
particular clutter patch
Vi the array steering vector, is unknown

8ir the clutter signal from that patch, is unknown
nyix  an independent noise vector for each
clutter patch.
and,

E{nyiknﬁh”} = &I, &;is known (9)

E {sixs;,} Yi (10)

The incomplete or measured data is simply the sum of the
complete data;
Xg = Z Yir . ( 11)
I

What we have done is to assign some portion of the receiver
noise as an independent noise source for each of the clutter
scatterers.

There are two likelihood functions that are needed for
the EM algorithm. The first is the incomplete, or received
data likelihood function. The second is the likelihood func-
tion of the complete data. We will deal with the complete
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data log-likelihood first, which dropping constant terms is
proportional to [9]

z L
he= 3 (o el - wBz8) =302 (o)

=1

This equation was originally a double summation over the
different clutter patches and the number of samples K at
each clutter patch however, the second summation was sub-
sumed into S;, the sample covariance of the hypothetical

i-th complete data vector, = f=1 yu,y{{. R,; is the true
covariance matrix for the i-th complete data vector

R,; = &I+ vvivi®, (13)

which is rank-1 plus diagonal and its singular values are
7 + ¢; and an (N — 1) multiplicity of ¢;. Because of the
independence of the complete data, we can deal with each
complete data vector separately, with the log-likelihood for

the i-th complete data vector denoted by 18,

The first step in the derivation of the Ei:id algorithm is
taking the conditional expected value of the log-likelihood
function, conditioned on the incomplete data and the cur-
rent parameter set @ = {x, {¥?}, {77}} where x is the set
of array measurements, {V?} is the estimate of the unknown
spatial steering vectors, and {77} is the set of signal power
estimates. For the i-th complete data vector, this is

E {zgf,)]e} = —log [Ry,| — trR;IE{S;[®}.  (14)

We will defer taking the conditional expectation on the right
until after the second step is accomplished.

The second EM step is to find the unknown parameters
in the complete data space that maximize (14). Neglecting
constant terms, (13) can be used to write (14) as

E{{JIO} = ~log(n +<:) - uR;IE{Si0}. (15)

Here we have made use of the property that the determi-
nant of the covariance matrix is the product of the singular
values. The ¢; singular values that would appear alone in
this equation have been dropped since they do not enter
into the maximization.

We will now introduce a change in coordinates via a uni-
tary transformation in order to assist in the maximization.
The particular transformation that we will use is:

Q= [dEDl] ®@Iy. (16)

This can be recognized as a Doppler filtering transforma-
tion. Here we are only concerned with the output of a single
Doppler filter. The first column of the matrix entering into
the Kronecker product is the phase progression, or a DFT
vector; the remaining columns are an orthonormal basis for
the orthogonal complement of d;. The orthonormal basis
is arbitrary for the purposes of this simplification, however,
in implementing the algorithm it would be expected that
there would be significant computational savings if this ba-
sis were the set of vectors required to complete the DFT
matrix, and if the other clutter patches were chosen such
that their Doppler progressions corresponded to these col-
umn vectors.

Because the transformation is unitary, we can insert
QQ¥ in (14) in the full space-time dimensioned data where
appropriate for simplification. We will then make use of the
following,

Q (dd” @ vv¥) Q = (ee”) ® (V¥¥) (17)

where e is the elementary vector [1, 0, -+ - 0] H

We introduce the unitary transformation QQ¥ both be-
fore and after E {S;|®} in (15) and make use of the rotation
property of the trace operator [10], to find

E{zgf,)]e} =
—log (v + &) — tr {Q"R;'QQ”E {5:/©}Q}.(18)

In order to further simplify this we will make use of the
Sherman-Morrison-Woodbury identity [11] to find the in-
verse of R, as given by (13)

-1 _ 1. 7i H
R, = e.—I ——e;(c.'+'y.~)vv . (19)

Substituting this into (15) and simplifying leads to

E {’ﬁ?le} = —log(vi +ei)—

Q¥E {s:|@} Q} : (20)

We now examine the second portion of the term within
the trace operator in order to perform the maximization
with respect to the unknown parameter V. The effect of
the ee” term is that only the upper left N x N corner of
QYE {S;|@®} Q is significant in the maximization. By the
Rayleigh quotient theorem we can see that This equation
will be maximized if ¥ is colinear with the principal eigen-
vector of the upper left corner of this matrix.

The remaining parameter that we need to maximize the
conditional expected value of the log-likelihood function is
the clutter power ;. We will define a temporary variable o
to simplify in this maximization,

a = tr {ee” @ VW Q¥E {S:|0} Q} (21)

where ¥ is the maximizing vector. We now need to maxi-
miz

e
E {l(i)le} = —log (&: +7i) + S | S— (22)
o ei(ei + %)

where we have dropped the terms not dependent on «;.
Taking the derivative of this with respect to +; and setting
the result equal to zero we can solve for v;
§ i 1 1
°E {z(') e} - «=
oy L | (i +%)  (ei+m)?
Y = a-—g& (23)

0,

Since there is a positivity constraint on +; and the likelihood
function is convex, the maximizing value of ~; is

7 = max (0, — ¢;). (24)
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This completes the M-step of the EM derivation. We will

now go back and determine the conditional expectation

E {S;|®} that we had deferred. We will need the follow-

ing results from estimation theory, recalling that each com-

plete data vector yix is independent from every other data
E{yx"|®@} = R,.

vector:
{530}

= Ry, (25)

After some simplification, the conditional expectation
E {S;|®} is then [12]

E {S;|®} (26)
= R':.' - Ry, ((R’,’)"l = (R:)_ls=(R:)_l) R':iH

and as stated earlier, we will need only the upper left of this
matrix after Doppler processing. S, is the sample covari-
ance matrix of the incomplete data. Further simplifications
of (26) are possible, but for the sake of brevity are not
shown.

We now need to put the entire algorithm together. To
form the estimate of the full space-time covariance matrix
while also determining the array calibration, we perform
the following steps:

1. Determine an initial estimate of the clutter scatter-
ers steering vectors and power. This could be Van-
dermonde steering vectors assuming a uniform linear
array with an a priori assumption about the scattering
power (alternatively one could assume that the clut-
ter energy is gero and the initial steering vectors would
then be immaterial).

2. Form the incomplete data space-time sample covari-
ance matrix using the collected data samples.

3. Form an estimate of the full space-time covariance ma-
trix using the estimated steering vectors and clutter
power.

4. Calculate the conditional expected value E {S;|®}, and
transform this using Q, which will Doppler process this
covariance according to the expected Doppler shifts of
each of the clutter patches.

5. For each Doppler frequency, estimate the spatial steer-
ing vector as the principal component of the upper left
portion of the Doppler processed complete data covari-
ance.

6. Estimate the clutter power associated with each patch.

7. Iterate to step number 3 until acceptable convergence
is obtained.

Once the steering vector ¥ and power 47 are estimated,
the full space-time vector can be constructed by applying
the Doppler sequence d. When this is performed for each
Doppler frequency, we can construct the full complement
of space-time vectors. The clutter covariance is simply the
sum of the vector outer product of each space-time vector.
Given that the clutter is low rank [2], the space-time vectors
themselves are a more economical method of representing
the full clutter information.

4. CONCLUSION

In an airborne adaptive array radar, there are two difficult
problems that need to be addressed. These problems are
the determination of the array calibration, and estimation
of the received data covariance matrix. This paper has ad-
dressed both of these two problems in a unified approach.
The resulting estimator will provide both array calibration
and an estimate of the clutter scattering power when only
a limited number of data samples are available. The array
calibration could greatly reduce the amount of flight time
needed to characterize an antenna array and could provide
a means of calibrating in flight without cooperative sources
or knowledge of the clutter scattering. This method shows
great promise in reducing the number of samples required
when one needs to form a full space-time covariance matrix
for the received data.
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