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ABSTRACT

In this paper, a self-calibration DOA estimation algorithm
for cyclostationary source signals is presented in which the ef-
fects of the sensor gain and phase shift uncertainty have been
eliminated. The uniqueness conditions and the asymptotic
consistency of the estimates are discussed. An alternating
projecting optimization algorithm is provided which lessens
the computational load involved in the nonlinear multivari-
ate optimization problem much less. A numerical example is
presented to show the effectiveness of the algorithm.

1. INTRODUCTION

Recently, the concept of cyclostationarity has been intro-
duced into array signal processing [1]-[3]. By exploiting the
source cyclostationarity, these techniques select the desired
source signals at the known cycle frequency and eliminate the
interferences and background noise which do not exhibit cy-
clostationarity or have different cycle frequencies. They have
the advantage of not requiring a priori knowledge about the
ambient noise environment.

However, these techniques rely on the assumption that
either the array sensors have known sensor gian and phase or
they have been calibrated when multiple sources are present.
In practice, this assumption has almost always been violated
due to physical perturbations of the sensors and sensor im-
perfections, and estimation performances can be adversely
affected. Several self-calibration techniques have been pro-
posed [4]-[7] for the conventional methods in which, the sen-
sor gain and phase uncertainties are treated as unknown pa-
rameters and are estimated along with the source parameters.
These conceptually simple algorithms are computationally
intense due to the increased dimension in the optimization
process.

The objective of the paper is to provide a self-calibration
DOA estimation algorithm for cyclostationary source signals.
By assuming that the source signals exhibit cyclostationarity
at cycle frequencies o and B, the array cyclic correlation ma-
trices at the cycle frequencies of interest are evaluated. The
relating matrix is defined and estimated by using the total
least squares (TLS) approach. A criterion function is formed
in which the effects of the unknown sensor gain and phase
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uncertainty have been eliminated. We developed a modi-
fied alternating projecting optimization algorithm for opti-
mizing the criterion. We also proved the necessary and suf-
ficient conditions under which the source parameters can be
uniquely determined. The estimator is shown to be asymp-
totically consistent. Finally, a numerical example is included
to show the effectiveness of the algorithm.

2. CYCLOSTATIONARITY AND THE ARRAY
SIGNAL MODEL

Consider an array consisting of M sensors and K(K < M)
narrow-band source signals in the far-field of the array. The
medium is assumed to be isotropic and nondispersive. When
using analytic representation, the array model is described
by

(1) = GA(9)s(?) + n(t), (1)
where z(t), s(t) and n(t) are the array data vector, the sig-
nral vector and the noise vector, and G = diag[6;, 62,...,6 M]

denotes the sensor gain and phase uncertianty matrix. A(©)
is the array composite steering matrix and its kth column
vector is defined as the steering vector associated with the
kth source.

SOURCE CYCLOSTATIONARITY We assume that the
source signals sk(t) are cyclostationary. A random process
(1) is said to exhibit cyclostationarity with cycle frequency
a if its cyclic autocorrelation function

rz(r) =< rz(t, t + 1) exp(—j2rat) >, (2)

is not identically zero, where notation < - > denotes time av-
erage and rz (¢, t+7) = E(z(t)z*(t+7)] is the autocorrelation
function of £(t). In r(t,¢+ 7), the conjugate operator can
be removed and (2) is called the cyclic conjugate correlation
function. Some signals have either nonzero cyclic or cyclic
conjugate correlation and some may have both. For example,
a quarternary phase-shift keying (QPSK) signal exhibits only
nonzero cyclic correlation and a binary phase-shift keying
(BPSK) signal has both nonzero cyclic and cyclic conjugate
correlation.

ARRAY CYCLIC CORRELATION Assume that the K
sources are mutually cyclically uncorrelated at o and 8. Also
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assume that the sensor noise processes are cyclically uncor-
related with themselves and with the source signals at o and
B. Tt follows that the array data cyclic correlation matrix
can be written as

R2(7) GA(@)R:(r)A¥(©)G®
Ri(r) = GA(®)R:(r)A¥(©)G", (3)

where R3(r) and RP(r) are the source signal cyclic corre-
lation matrices at cycle frequencies a and 8. The diagonal
matrices R(r) and R?(r) can be related by

R3(r) = ®R3(7). (4)
where @ = diag[¢1, ¢2,...,dx] is defined as the relating ma-
trix. Define the matrix Z as

2| 50 ][ &8s | mowroen, o

and its singular value decomposition is Z = E[ZT,Q]D¥.
For the assumed full rank source cyclic correlation matrix, Z
has only K nonzero singular values. Assume that diagonal
elements of ¥ have been arranged in decreasing order and
partition matrix E as follows

— Esl Enl

b= [ B Em ] ©)
where E,1, E,2 € R®*X, From the SVD analysis, we know
that the range space of [EL, EL]T is identical to that of
[AT(0A,2AT(©)A]" and the following relation can be ob-
tained

E:Z = EI‘aIT‘-1 T = EJI‘I,’ (7)

where matrix ¥ can be solved in the least squares sense.
Denote E, = [E,3, E,z]. The TLS approach can be applied
(8] which yields

UrLs = -Q12Q% (8)
where Q12 and Q22 are defined by the following eigendecom-
position

Hp _ | @ Q2 Qi Qf
E‘E"_[Qzl sz]r[Qﬁ QE’;]’ )

where the block matrix Q;; € R**¥ for i,j = 1,2. Since the
relationship ¥ = T®T ! holds, the elements of the relating
matrix ® will be estimated from the eigenvalues of 73,

3. SELF-CALIBRATION ALGORITHM
With the estimation of the relating matrix ®, we can proceed

with the self-calibration DOA estimation algorithm. From
(3), the mnth element of RZ(r) and RZ(7) can be written as

K
6m85 Y exp{jwo(Tmk — Ta)}sk

Tmn =
k=1
X
B = 6m5;zexp{jwo(fmk—'Tnk)}¢k3k: (10)

k=1

respectively, where sx is the kth diagonal element of the diag-
onal matrix R{(r) denoting the kth source cyclic correlation.
Define lymn as

8 _ Porey eXP{iwo(Tmk = i)} s

Pn 2K exp{jwo(Tmk — Tak) }PksK

’ (11)

Imn =
form,n=1,2,..., M. Equation (11) can also be written as

K

ZexP{jwo(ka — Tnk) Hilmndx — 1)sx = 0. (12)

k=1

which in matrix form, becomes

[LB(©)® - B(©)]s =0, (13)
where
L = diag[li1, li2, ..., Imn]
8=[s1,82,...,8%]".
and B(0©) is a matrix of M? x K and its kth column b(8y) is
implicitly defined by

b(8,) = vecla(8,)a™ (8,)), (19)
where vec[-] stands for the concatenation of the columns of its
matrix argument. In practice, exact L and @ are usually not
available and their estimates i and @ are applied. The source
DOA parameters are estimated by minimizing the following
criterion function in the least squares sense

Py

)

arg mem J(©)

J(©) I [£B(©)é - B(O))s |7, (15)

where F denotes the Frobenius norm. The optimization of
J(©) is a multivariate nonlinear optimization process which
usually involves high computational load. Since J(@) is a
monotonically increasing function of the norm of s, restric-
tions on g are required to make J(@) a valid criterion func-

tion. Let &(0,) = (Léx—1I)b(8,), where I denotes the identity
matrix and define matrix C and 3 as

Cy = [é(gl)x R aé(-a-k—l)’é(g.k+1)’ LR yé(gK)]

S = [s1,...,9%-1,9%41,...,9x]%. (16)

Obviously, fixing any one element of s would not affect
the optimization of J(©) with respect to ©. If we set s = 1,
then criterion (15) can be rewritten as

© = argmin || £(¢) + Cisy |17 - (17)
Fixing © and minimizing J(©) with respect to s, yields
5 =-Cle(@,), (18)

where C': = (CHC:)~'CH is the pseudo-inverse of CE. Sub-
stituting 3, back into (17), we obtain
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© =arg min || Pz, &(8.) l», (19)

where Pé:h is the orthogonal projector onto the null space

of C’f . A computationally efficient alternating minimization
algorithm is then proposed as follows.

o Set threshold ¢. Obtain an initial source DOA param-
eter estimate

a

6@ =[5, 87,..., 8]

¢ Assume that in the ith iteration, the estimate () has
been obtained.

¢ For k=1 to K, minimize criterion (19) in the kth source
DOA parameter 9, while fixing all the others. After
the K'th iteration, a new estimate ©U*1) is formed.

e Stop the algorithm if || ¢+ — () ||< € and assign
the estimate as & = 60+, If the inequality is not
satisfied, go back to the previous step and repeat.

UNIQUENESS Assume that the array cyclic correlation
matrices are accurately estimated. Define the limit criterion
function J(©) as

J(©) =|| [LB(©)® - B(®))s IlF=Il D(®)s 7.  (20)

The source parameters are known to be estimated as the
minimizing arguments of J(©) or by resolving the following
equation

D(©)s =0, (21)
It is obvious that the true source parameters are solutions of

equation (21). In the following, we establish the necessary
and sufficient conditions for (21) without detailed proof [9].

Theorem 1 Let © and s denote the true source parameters,
where s # 0, k = 1,2,...,K. Then, s’ and ©' are also
solutions of (21) iff

™) = Tm(8)+Arm
s = gs (22)

where 7y, denotes the time delay induced on the mth sensor
by the source, Aty, is a real and g may be a complex constant.

It is noted that the proof of this theorem is completed us-
ing mathematical induction, and the theorem is subject to
certain array structure restrictions [9]. The theorem states
that the self-calibration algorithm can resolve the sources
which induce time delays on the array up to a translation
factor and the source cyclic correlation up to a scaling fac-
tor. However, the uniqueness of the source DOA parameters
also depends on the array structure. In the following, the
rotational-invariant and rotational-variant array structures
are introduced.

Definition Define oz and mmin as

Tmas = max m(8) and Tmin = n%in ™m(8),

for m = 1,2,...,M. An array is said to be rotational-
invariant if, for an arbitrary constants r» and §, satisfying
{Tmin < Tm(Q) +ATm £ Tmaz m = 1,2,..., M}, there exists
a §' such that

Tm(@) =tm(@) + At m=1,2,...,M.  (23)

An array structure is called rotatioal-variant if for arbitrary
constants At and § satisfying, {rmin < Tm(8 + Arm <
Tmaz M = 1,2,..., M}, there does not exist a §’ such that
(23) holds.

For rotational-variant and -invariant arrays, we have the
following lemmas [9].

Lemma 1 For rotational-variant arrays, the DOA estimates
obtained from solving equation (21) can be uniquely deter-
mined, but for rotational-invariant arrays, they can be re-
solved within an arbitrary translation factor in their corre-
sponding time delay induced on the array.

The non-uniqueness of the DOA estimates for rotational-
variant arrays can be seen from the array signal models. For
rotational-invariant array, we have A(®’) = AA(©) and

z(t) = GA(©)s(t) + n(t) = G'A(®")s() +n(¥), (29

in which G’ = GA. Since GA(©) and G’ A(©’) are indentical,
then © and G can not be solved separately.

In the above, the uniqueness conditions on the array
structure have been discussed for source parameters solved
from the limit criterion function. In practice, the limit crite-
rion function is usually not available and the criterion func-
tion is formed from the estimated array cyclic correlation
matrix at the cycle frequency of interest. In the following
lemma, the asymptotic consistency of the DOA estimates is
established in which we assume B2, RZ and  are all asymp-
totic consistent estimates.

Lemma 2 The DOA estimate © obtained from (15) con-
verges w.p.1. to © for rotational-variant arrays, and converge
w.p.l. to © within a common arbitrary translation factor
in their corresponding time delays induced on the array for
rotational-invariant arrays.

4. A NUMERICAL EXAMPLE

Assume that the sources and the array sensors are distributed
in zy plane. The array contains six sensors located at posi-
tions
11 31 51
{(0’ 0)’ ('2'7 5)’ (1! O)a (E’ 5)! (2» O)) (5’ 5)}

Two uncorrelated BPSK signals are simulated from the far-
field at 6; = —10° and ¢; = 10° to the y-axis. The source
powers are set to unity and half the unity, respectively. The
additive stationary sensor noise is assumed to be a spatially
white Gaussian process with zero-mean. The sensor gains
and phase are simulated as perturbed around unity and zero
10% and 20%. Fig. 1 shows the mean-squares-error (MSE) of
the DOA estimates versus SNR for Cyclic MUSIC [2] and the
proposed self-calibration algorithm. In each test, 100 array
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samples are used and each test is repeated 100 times to obtain
the averaged results. In the plot, Cyclic MUSIC is seen to be
a biased estimator while the self-calibration algorithm shows
a great improvement over Cyclic MUSIC in the presence of
unknown sensor gain and phase uncertainty.
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Figure 1: The variation of MSE of the estimates via SNR



