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ABSTRACT

We consider the problem of separating and esti-
mating the waveforms of superimposed signals received
using an array of uncalibrated sensors. The array el-
ements are assumed to have the same unknown gain
pattern, up to an unknown multiplicative factor. The
phases of the elements are arbitrary and unknown. In
this paper we analyze the quality of the estimated sig-
nal in terms of the output signal to interference ratio
(SIRO) and output signal to noise ratio (SNRO). It is
shown that uncalibrated arrays can be used success-
fully for signal separation and estimation using only
second order moments. The analysis is verified by
Monte Carlo experiments using an algorithm for steer-
ing vector estimation presented in [1].

1. INTRODUCTION

The problem of separation and reconstruction of
superimposed signals using an array of sensors attracted
considerable interest in the last decade. The increasing
use of cellular communications is expected to present
a higher demand for effective methods for interference
canceling and signal separation.

Most of the work on this problem [2],[3], [4], [5]
concentrated on the case where the array manifold is
known, i.e., where the array is well calibrated. In prac-
tice, it is difficult to maintain a precisely calibrated
array. Temperature, pressure, humidity, mechanical
vibrations and objects in the near field all affect the
calibration precision. Furthermore, the presence of
multipath changes the response of the array to the sig-
nal arriving from a given source, in complicated and
unpredictable ways. There is, therefore, considerable
practical interest in the development of signal estima-
tion techniques which are able to operate with uncali-
brated arrays.

It is known that “blind” estimation is possible for
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non-Gaussian signals, by using high order statistics of
the received data [6, 7, 8]. The term “blind” is used to
indicate that the array manifold is assumed to be com-
pletely unknown. Techniques based on second-order
statistics can not solve the “blind” estimation problem.
In other words, the assumption of non-Gaussianity is
essential for this approach.

It is interesting to note, however, that if we as-
sume that the array element have the same unknown
gain pattern, up to an unknown multiplicative fac-
tor, signal estimation becomes possible using only sec-
ond order information. This is a practical assumption,
since the gain pattern of antennas is much more sta-
ble than their phase pattern. In other words, while
“blind” estimation requires non-Gaussian signals and
high-order statistics, “almost blind” estimation is pos-
sible for any type of signal, using second order statis-
tics. Such algorithms were recently presented in [1]
and [9].

The focus of this paper is on the performance
analysis of “almost blind” signal estimation, in the
sense described above. The analysis is carried out for
signals which are Gaussian, narrowband, and statisti-
cally uncorrelated. The quality of the estimated signal
is defined in terms of the output signal to interference
ratio (SIRO) and output signal to noise ratio (SNRO).
Closed form expressions are derived for the SIRO and
SNRO of an uncalibrated array, using the Cramer Rao
Bound (CRB) on the variance of the estimated steering
vectors. By evaluating these expressions for selected
test cases it is shown that uncalibrated arrays can be
used successfully for signal separation and estimation
using only second order moments. To validate our
analysis we compared the theoretical error variances
to experimental variances obtained by performing sig-
nal estimation with a particular algorithm for steering
vector estimation. The algorithm used was the one
presented in [1].



2. PROBLEM FORMULATION

We begin by describing the data model for the
observation of narrowband signals by an array of sen-
sors. We consider an M-element array of sensors and
N narrowband signal sources, and define the M x 1
vector a, to be the complex array response for the
nth source.

The outputs of the M array elements at the k—th
sample are arranged in an M x 1 vector,

x(k) = As(k) + u(k) k=12.--N,; (1)

where u(k) is the noise vector, s(k) is the signal vector,

and A
A =[a;, a3, --,ap] (2)

Assuming that the signal vectors s(k) and the noise
vectors u(k) are realizations of stationary, zero mean
Gaussian random processes, and that there is no corre-
lation between the different signals and no correlation
between the noise and the signals, the data covariance
matrix is

R 2 E{x(k)x# (k)} = APAH 4 51 (3)

where P is the signal covariance matrix (a diagonal
matrix) and gl is the noise covariance matrix.

In this work we focus on the case where the array
sensors are uncalibrated. We assume that the uncal-
ibrated sensors have the same unknown gain pattern,
up to an unknown multiplicative factor. The phases of
the elements are arbitrary and unknown. We therefore
use the following model for A.

A =GCH )
gp forp=g
Glpe = 5
(Gl {0 otherwise )
h forp=g¢q
Hl,, = L4 6
( L {0 otherwise ©)
[Clpg = el e (7

The positive real numbers g;,g;---gp are the un-
known multiplicative factors of the sensor gain pat-
terns. The diagonal matrix H represents the gain vari-
ation as a function of direction. Since H only affects
the received signals power, see (3), it can not be sepa-
rated from P and therefore we set H = I, without loss
of generality. The constants ¢pq are the unknown sen-
sor phase responses. We are interested in estimating
the signal samples s(k). The signals may be estimated
by first estimating the array steering vectors, as will
be shown shortly. Note that the observations, namely

1889

x(k), do not change if A is right multiplied by a diag-
onal matrix while s(k) is left multiplied by the inverse
of the same diagonal matrix. This means that the
steering vectors and the signals can be observed (and
estimated) only up to a multiplicative complex scalar.
We therefore assume, without loss of generality, that
the first element of each steering vector is one.

3. SIGNAL ESTIMATION

Perhaps the best known method for estimating
the signals s(k) [2] is by first obtaining an estimate
of the steering vectors matrix, A, and then evaluating
the relation

8(k) = (AHA)~1AHx(k) (8)

The signal estimates are affected by the imperfection
of the steering vector estimation and by the noise and
the presence of multiple signals.

Next we obtain expressions for the quality of the
signal estimation under these conditions. Without loss
of generality we let the N-th signal be the desired sig-
nal and the other signals being the undesired or inter-
fering signals.

We make the following partition of A,
A =[D,v] 9)

where v stands for the last column of A and D stands
for the M x N — 1 matrix associated with the first
N — 1 columns of A. We define the matrices,

T, £ D(D¥D)~'DH (10)
T21-T, (11)
D 2 (D¥D)-!DH (12)

where T is the projection matrix on the column space
of D, the matrix T is the projection matrix on the null
space of D and D is the left pseudo-inverse of D.
Using these definitions it can be shown that

1

HAa\-1AH _
(A7A)7A T vHTy

D[(vETv)I - vwHT)
vHT
(13)
For noiseless observation and perfect estimation of the
steering vectors (8) and (13) yield

vH Tx(k) _ vHTAs(k)

Sn(k) = [s(k)lv = vETvy vHTv
VT <14>

vHTv



which is the desired result. The last equation indicates
that the least squares estimator of the signal involves
two operations:

i) Projection of the observation vector on the null
space associated with the first (N — 1) signals
(i.e., multiplication of x(k) by T.) The result is
Tvsx (k). This operation isolates the N-th signal
by elimination of all the other signals. It may also
be viewed as steering nulls of the array radiation
pattern towards the first N — 1 sources.

ii) Estimation of sy (k) by adding up the desired sig-
nal components (14).

In practice, the measurements are noisy and the
estimation of steering vectors is not perfect. In this
case we obtain

v Tx(k)
vHTV

vAT[As(k) + u(k)]

vHETV
- N-1 g+ ~Hrr
vATy v?Ta, veT
——sn(k) + —s,(k) + =
ity N ) n; T T e T

in(k) =

u(k)

N-1
£ asn(k)+ Y Basn(k) + s u(k) (15)

n=1

where a,, is the n-th column of D and «,8,,u are
defined by the equation above. The last equation indi-
cates that the estimate of the signal waveform is cor-
rupted by a multiplicative complex scalar, an additive
residuals of all the co-channel signals, and an additive
scalar function of the noise in all the antennas.

It is of interest to examine in detail each of these
contributors to the error in the signal reconstruction.
We have already seen that under ideal conditions we
have

a=1,

Bn=0, n=1,2,---,N~1; (16)

We can now define the Signal to Interference Ratio
(SIRO) at the array output as,

PNE{|&|2}
oy PaE{18a 12}

SIRO 2

(17)

where p,, stands for the power of the n-th signal.

Note that 3, is random due to the random errors
in estlmatmg the steermg vectors. In order to evalu-
ate E{|,B,,|2} we examine the sensitivity of 4, to small
errors in the estimation of the steering vectors.
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A first order Taylor expansion of 3, is given by

Z dgx =g + ZZ 2, ‘5¢pq (18)

p=lg= 1

Using straightforward algebraic manipulations we
obtain the following results,

9B, _ _ef CDa,v Te; (19)
ogr vETvy

where C represents the matrix C with the last column
omitted and e represents a column vector whose el-
ements are zero except for the kth element which is
one. We also get,

H

Ofn - {_jgg('l)a,,v I;I‘)Teqeg'Deq forg< N

a¢ v TV
Pe 0 forg=N
(20)

Let us define
ué[...gk...,...%q...]T (21)
3,3,; 6ﬂn

hﬂé s R T - (22
[ g 6¢pq ] ( )

Using these definitions the denominator of (17) can be
written as

N-1

Z PaE{|5a*} = Z pahFE{usuT}h, (23)

=1

In order to evaluate E{6uéu”} we use the Cramer Rao
bound on estimating the steering vectors, which is de-
rived in the Appendix of [10]. A close approximation
for E{|&|?} in the numerator of (17) is 1, provided
that a reasonable number of snapshots is used (i.e.
E{|a)?} = 1+ O(1/N,)). We therefore use the approx-
imation

PN (24)

SIRO =~
N1 p,hHCRBSh,

where CRBS stands for the Cramer Rao Bound on the
estimation error of the Steering vectors.

In a similar way we define the output Signal to
Noise Ratio (SNRO) as

a pnE{la?}

SNRO =
E{l|A]*}n

(25)

For large N, we have

DN (vHTv)2
n(vHTv)

SNRO =~ = %VVH Tv  (26)



The last equation indicates that the SNRO is a func-
tion of vH Tv which may be very small if the desired
and interfering signals are not well separated. In such
a case, the cancellation of the interference causes a
significant cancellation of the desired signal as well.

4. NUMERICAL EXAMPLES

In this section we present some numerical exam-
ples which show the quality of signal estimation which
can be achieved using uncalibrated arrays. Each plot
shows theoretical results by solid lines and experimen-
tal results by small ’x’. The experimental results are
obtained by Monte Carlo computer simulations using
the algorithm described in [1]. Each ’x’ represent 300
experiments.

SIRO vs. SIRI
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Figure 1: SIRO vs. SIRI. The interference

intensity is decreased while the sig-
nal intensity is fixed.

Figure 1 shows the SIRO as a function of SIRI
for different DOA separations. Here we kept the sig-
nal power fixed (input signal to noise ratio is 10 dB)
and decreased the interference power. The array is a 5
element linear array with element spacing of half wave-
length. We observe that for DOA separation of 7° the
SIRO decreases even though the SIRI increases. The
reason for this is the increasing difficulty in estimating
precisely the steering vector associated with the inter-
ference. Since the desired signal is close to the inter-
ference, the interference suppression is reduced. This
effect disappears as the signal separation increases.

5. CONCLUSIONS

In this work we examined the possibility of using
uncalibrated arrays for separation and reconstruction
of superimposed signals arriving from different direc-
tions. We used small error analysis and the CRB, to

calculate the output signal to interference ratio and
the output signal to noise ratio. The theoretical anal-
ysis was verified by Monte Catlo computer simulations,
using an algorithm for steering vector estimation pre-
sented in [1]. The possibility of signal estimation and
separation with uncalibrated arrays is of considerable
practical importance. We are currently working on the
development of computationally efficient algorithms
for performing the estimation.
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