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Abstract

This paper is concerned with the problem of optimal (mazi-
mum likelihood) direction of arrival (DOA) estimation in situa-
tions where the sensor array is calibrated over only a portion of
the DOA space. Situations such as this often arise in airborne
direction finding when skywave multipath is present. A parame-
terization is proposed for partially calibrated arrays (PCAs), and
the identifiability of the model is discussed for both uncorrelated
and correlated signals. It is shown how the signal and noise
subspace fitting algorithms are generalized to handle PCAs, and
a detection scheme is proposed for individually determining the
number of signals arriving from calibrated and uncalibrated di-
rections. The results of several simulation examples are included
to validate the analysis.

1. Introduction

To calibrate an airborne antenna array, a single
source is typically placed in a fixed location on the
ground, and the aircraft flies around the source to re-
ceive data from various azimuth and depression angles.
Unfortunately, this does not provide information for sig-
nals arriving from above the aircraft (unless the plane
can fly upside down!), and these directions must either
be ignored, or approximate calibration data (e.g., from
a scale model in an anechoic chamber) substituted for
them. While in most airborne direction finding (DF)
applications there are no actual emitters above the col-
lection platform, it is common for signals from ground-
based emitters to reflect off upper layers of the atmo-
sphere and be received by the aircraft from above, as
depicted in Figure 1. This is especially common in the
HF band, where it is referred to as the “skywave” phe-
nomenon. Even though the array is typically on the
underside of the aircraft and is primarily sensitive to
signals arriving from below, a significant component of
the skywave signals is coupled into the array through
the aircraft frame.

There is no difficulty in implementing one-dimension-
al DOA estimation techniques such as MUSIC [1] in
situations like those described above, one simply plots
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and searches the DOA spectrum only over the angles
for which the array is calibrated. However, if the sig-
nals from uncalibrated DOAs are due to skywaves as
in Figure 1, they can be highly correlated with the
signals from calibrated directions, and one-dimensional
techniques may perform poorly. Multidimensional algo-
rithms must be used in such cases, but the question of
how to parameterize a partially calibrated array (PCA)
and estimate the resulting parameters becomes an im-
portant issue.

In this paper, it is shown how one might parame-
terize a PCA, and conditions are derived under which
the resulting PCA model is identifiable. In addition,
it is shown how the subspace fitting class of algorithms
may be adapted to properly handle PCAs, and estimate
the calibrated DOAs with minimum variance. Both the
signal subspace fitting (SSF) [2] and noise subspace fit-
ting (NSF) [3] methods will be considered. For the
case of SSF, the optimal subspace weighting remains
unchanged, but the form of the criterion function is
modified. For NSF, the criterion remains the same, but
the weighting is formed by taking a certain sub-block of
the weighting in the fully calibrated case. In either case,
a non-linear minimization is required only for the DOAs
that arrive from calibrated angles. Since this number is
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Figure 1: An airborne platform receiving direct and skywave sig-
nals.
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typically not known a priori, a technique is presented
to individually estimate the number of calibrated and
uncalibrated DOAs.

2. Data Model and Relevant Algorithms

In the standard narrowband model, the output of the
array can be described by

x(t) = A(Bo)s(t) +n(t) ,

where s(t) and n(t) are the received signal and noise,
respectively, and where

A(8o) = [a(6y) --- a(84)] € C™*¢ (1)

represents the array response for m sensors and d total
sources. If E, and E, denote the signal and noise sub-
space eigenvectors of the covariance of x(t), then the
SSF and NSF (minimization) criteria can be expressed

as follows:
Vesr(8) = Tr WE;)
LA(O)U)

where W and U are weighting matrices, and P5(9) is
the projection

P4(6) =1— A(6

(Pi(@E, (2)

~

Vivse(6) = Tr (A*(O)E. B 3)

J[A*(8)A(6)]71A*(8) .

The key feature of these algorithms is that asymptoti-
cally optimal (in the maximum likelihood sense) DOA
estimates are achieved if the following weightings are
applied:

Wopr = (As - &2)2A;1 (4)

(5)

where A, is diagonal and contains the signal subspace
eigenvalues, 4% is a consistent estimate of the noise
power, () denotes a pseudo-inverse, and 8 is a con-
sistent estimate of the DOAs.

UOPT = AT(éO)EsWOPTE:AT*(éo) ’

2.1. PCA Model

The above algorithms must be modified when only
a PCA is available, since the array cannot always be
fully parameterized by the DOAs alone. Suppose there
are respectively ¢ and u signals from calibrated and un-
calibrated DOAs, so that d = u + ¢, and assume for
simplicity that there is only one parameter per source
(e.g., azimuth angle only). The case of multiple pa-
rameters (e.g., azimuth and elevation) is handled iden-
tically. Without any information about the array re-
sponse in the uncalibrated directions, the array can only

be parameterized as follows
A(n) =[A(8) | A.], (6)
where
A(0) =[a(61) --- a(b.)],

A, is an m X u matrix containing the array response
vectors for the uncalibrated DOAs, and

7]
= l: Re{A,} } . (7
Im{A.,}

It will be assumed that A(n) is always full rank for sig-
nals arriving from distinct directions, and hence that
the array, though only partially calibrated, is nonethe-
less unambiguous.

For this model, the subspace relationships that must
be exploited by SSF and NSF are as follows:

Es = A(Oo)T
0=E:[A(6)) |

c+A,T, (8)
A, (9)

where T, and T, are ¢ x d’ and u x d' matrices, re-
spectively, and where d' < d is the rank of the signal
subspace. Thus, for the PCA problem, the array is sim-
ply parameterized by the vector 7 instead of 8 directly.
As long as the PCA model is identifiable, then both the
SSF and NSF estimators of 1 are guaranteed to be sta-
tistically efficient [4, 5]. The conditions necessary for
identifiability are examined below.

2. Identifiability

To begin with, note that if [A(8) i
satisfy (8)-(9), then so do [A(8) i
where

A,], T, and T,
All,T., and T,,

Al =P5(6,)A,T
T:: = Tc + AT(Oo)AuTITu

for any full rank u x d’ matrix T’. Consequently,
to guarantee the uniqueness of the model for A,, it
is assumed that its first row is real-valued, and that

A(9) =0, ALA, = 1. The definition of 7 in (7) is
thus somewhat over-simplified.

The critical issue of course is the identifiability of 8
in the model above. Consider for a moment the case
where there are no perfectly correlated signals (d = d').
Identifiability in @ will be lost if there exists 8’ # 8,
and a 2d x d matrix P such that

[A(8o) i

Since [A(8p) | A,]is full rank, it is clear that such a
P will not exist if 8’ # 6y as long as m > d (which

A, A(0) AP =0. (10
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is the standard criterion for DOA identifiability). The
situation is somewhat more complicated when coherent
signals are present, and space permits only a summary
of the results in this case:

e The DOAs of all signals that are not coherent
with signals arriving from uncalibrated directions
are identifiable as long as the standard condition
m > 2d — d' holds [6].

¢ If a signal is perfectly correlated with a signal from
an uncalibrated direction, its DOA will in most
cases be unidentifiable even if m > 2d — d’.

An unequivocal statement in the latter case is not pos-
sible since there exist some (typically unrealistic) situa-
tions where identifiability is preserved. For example, if
the signals arriving from two calibrated DOAs 81,0, are
not coherent with each other, but fully coherent with a
signal from an uncalibrated DOA, then 8;, 6, are iden-
tifiable.

Although there are many more parameters to be es-
timated with a PCA model, it will be seen in the next
section that all of the uncalibrated source parameters
are separable in both the SSF and NSF cost functions,
and one need only search for the ¢ unknown calibrated
DOAs.

3. Detection and Estimation with PCAs

This section presents the modifications necessary to
apply the SSF and NSF algorithms to arrays parame-
terized by the PCA model above, assuming that both
¢ and u are known. A technique for estimating ¢ and u
is presented at the end of the section.

3.1. Subspace Fitting Algorithms

Using the constraints on A., necessary for identifia-
bility, we have

P4(n) =P%(0) — A.AL.

Augmenting (2) with the constraints on A, thus yields
Vesr(n) = Tr (Pj(())ESWﬁ‘,;) + Tr(AZE,WE?A,)

+Tr(A1(ALAL — 1) + A2A%A(9))
(11)

where A, A, are matrices of Lagrange multipliers. The

following concentrated criterion function that depends

only on the c-element vector 8 can be obtained by elim-

inating all of the remaining separable parameters:

d
>

t=ut1

Vess(0) = 3 o: (W/PEIPS(OB,WY2) | (12)

where o;(-) represents the stb singular value of its matrix
argument ordered as ¢; > g3 > -+ - > ¢4. The modified
SSF criterion is thus the sum of the ¢ smallest singular
values of W1/2E*P%(0)E,W'/2 which clearly reduces
to the standard SSF criterion of (9) when u = 0.

For NSF, the constraints on A, yield an optimal
weighting of the form

At (B , . PR
U()PT = [ "(*0) } EsWOPTEs [AT (00) Au] s
Aj
A (13)
where A, is a consistent estimate of A,. Such an es-

timate can be found using a consistent estimate of 8,
by settmg A equal to the u dominant singular vec-
tors of P+ (OO)E E Since, given any c-element 6, it is
always p0551ble to ﬁnd a set of orthogonal vectors A,
that satisfy AX[E, | A(8) )] = 0, implementing NSF in
the PCA case 31mply amounts to finding the c-element
vector 8 that minimizes

Vysr(8) = Tt (A*(B)EnE;A(G)UC) . (14)
where U, is the upper left ¢ x ¢ block of Ugpy in (13).
As in the standard formulation of the problem, NSF
does not yield consistent estimates when coherent sig-
nals are present [5], and thus SSF is preferred in such
situations.

3.2. Determining the Number of Signals

Due to the loss of identifiability in most cases involv-
ing coherent signals, only the case where d' = d will
be considered here. In such cases, an estimate of the
total number of signals present is easily obtained using
standard methods, but determining values for ¢ and u
is somewhat more difficult. Using arguments similar to
those in [7], it can be shown that when ¢ and u are cor-
rectly determined and VSSF in (12) is evaluated at its
minimizing argument &, then 2NV sr(80)/6% is a X2
random variable with 2¢(m — d) — ¢ degrees of freedom.
Using this fact, the following simple hypothesis test can
be used to estimate c:

1. Find an estimate d of the total number of signals
using a standard detection algorithm.

2. Set ¢ =d.
3. Let the null hypothesis be Hy : ¢ = é.

4. Choose a threshold v for the hypothesis test based
on a x2[2¢(m —d) —¢] distribution and some desired
confidence region.

5. Estimate 8y under Hy, and evaluate Vssp(éo).

6. If 2NVss,(00)/62 < v, accept Hy and stop.
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Figure 2: Probability of Correct Detection vs. Correlation Level
of Uncalibrated Source

7. 2N V;5p(80)/62 > v, reject Hy and set & — &—1.

8. If ¢ = 0, stop; otherwise, return to step 3.

4. A Simulation Example

As a simple example of the techniques presented, con-
sider a six-element uniform linear array that is “cali-
brated” only for angles very near broadside. Two 10dB
SNR signals from the calibrated DOAs 0° and 5° were
simulated, along with a 5dB SNR signal arriving from
an “uncalibrated” direction of —25°. The uncalibrated
signal was assumed to be correlated with the broadside
source with a varying correlation coefficient p. A total
of 250 snapshots were used to estimate ¢ and » and the
calibrated DOAs, and 1000 such trials were conducted
for various values of p ranging from 0 to 0.7. Figure 2
shows the probability of correctly determining ¢ = 2 for
two different choices of the threshold ~ corresponding
to confidence intervals of 95 and 99%. In each case,
the detection probabilities closely match the predicted
confidence level. The RMS estimation error associated
with the broadside source is plotted in Figure 3 for both
MUSIC and SSF. While the performance of both algo-
rithms degrades as correlation increases, the RMS error
for SSF is significantly lower at all values of p.
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