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ABSTRACT

A method is presented for classifying multi-level PSK
signals in the presence of additive white Gaussian noise
(AGWN). The technique is based on the Discrete Fourier
Transform (DFT) of a phase histogram. The probability of
correct classification is given and it is found that the
technique performs well at low SNR. The benefits of this
technique are that it is simple to implement and requires
no prior knowledge of the SNR of the signal for the
classification.

1. INTRODUCTION

The automatic classification of modulation type of a
communications signal finds applications in the fields of
Electronic Surveillance, spectrum management and signal
interception where it is an important sorting parameter in a
complicated problem. There are also applications in
modulation diverse communication systems in which the
system may receive a variety of modulation types. The
initial trend was to treat modulation recognition as a non-
deterministic pattern recognition problem {1] which works
well at a high SNR, but is poor at low SNR. Consequently
some research effort has been applied to deterministic
forms of pattern recognition [2](3][4]. Some of these
methods rely upon knowledge of the SNR of the signal for
decision parameters, but this is difficult to obtain in a true
signal environment. The method presented shows a
technique for classifying PSK signals without using SNR
information, and the performance is found to work well at
low SNR.

Phase samples of the incoming signal are collected and
placed in a histogram. After a sufficient number of these
have been collected, the histogram is passed through a
DFT in order to exploit the periodicity of the histogram.
The DFT bin numbers correspond to the number of levels
of each of the PSK types considered, and are converted into
magnitude squared where the largest of these identifies the
PSK type (figure 1).

The theoretical development given below shows that the
number of bins should be a power of two to avoid the
effects of spectral leakage, and a closed form expression
for the probability of misclassification is derived. It is
found that the number of histogram bins used in the
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process does not affect the classification procedure when
aliasing effects are made insignificant. Finally the error
probability for this method is compared to that of the
method of statistical moments, and it is found to compare
favourably.

2. THEORETICAL DEVELOPMENT

A time frame of the signal of interest is captured and
digitised. This signal is then converted into an analytic
form, the carrier is removed by complex mixing and the
phase samples are extracted. It is assumed that the carrier
frequency component is accurately known. The received
signal is the sum of an ideal PSK signal and AGWN. The
phase p.df. of multi-level PSK in AGWN may be
developed from a carrier wave (CW) p.d.f. f(¢), which is

described in Fourier series form as [5]:
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When M level PSK is considered, the p.d.f. f,,(¢) becomes

£,(6) =_2f( 21t(k+05) n) @

The Fourier series form of this p.d.f. is given by [6]

1 1 - o
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The Fourier series coefficients b are a function of the
SNR p, which is given by [5] as :

- )

I,(x) is the modified Bessel function of order v, which is
of an integer plus a half order. It is found that as m is
increased b, decreases, and as p is decreased the

separation between harmonic magnitudes increases [6]. At
low SNR the Fourier series is dominated by the mean and
first harmonic. This final property will be used when
evaluating the probability of false classification,
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2.1 Histogram Representation

The phase samples ¢(n) are used to build up a phase
histogram with N bins and L samples to approximate the
p.d.f.. The following theory characterises the error between
the true p.d.f. and the histogram approximation.

It is known [7] that the variance o? between the true
p.d.f. and the histogram estimate for a particular histogram
biniis:

, 1
o =7 4f () )
where ‘L is' the number of samples, A is the bin width,
which is assumed to be small, and i is the histogram bin
number. By virtue of the central limit theorem, the errors
of all the bins will be normally distributed for large L. The
mean variance of the error terms is expressed by :
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where G2 is the noise variance of the N bin histogram. As

the histogram has equally spaced points in the interval

[~=.x],

A= % . It can be shown that the noise variance is :

a2 N
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2.2 Discrete Fourier Transform

The N points of the histogram are operated on by the
discrete time Fourier transform to exploit spectral peaks
corresponding to the harmonic terms. N is made to be a
power of 2 in order that the harmonic terms will coincide
with the frequency bins, thus avoiding the effects of
spectral leakage. The bin number corresponds to the
harmonic number (where the D.C. component is on bin 0),
and from (1) it is seen that M level PSK will be
characterised by a series of spectral lines on the bins which
are a multiple of M.

It can be shown by the sampling theorem that harmonics

of order & and higher will be subjected to aliasing. In
order to avoid the aliasing of the fundamental harmonics
for any of the PSK schemes presented to the system for
classification, N must be at least four times the highest
symbol number.

The magnitude squared of the DFT is used as it is simple

4. to produce D(k)

to calculate, and this is scaled by <7

which will provide magnitude squared values for the
harmonic terms. When a harmonic component is not
present in a bin that bin has only AGWN present and D(k)
will be Rayleigh distributed [8] with variable y and p.d.f. :

p(y)=r’Lexp(-m’Ly) y>0 ®
This result shows that the noise floor is independent of the
number of histogram bins N and implies that N may be
made large enough to remove any significant effects of -
aliasing without affecting the noise floor.

When a frequency bin is occupied by a harmonic signal
with the histogram noise, the bin is distributed with a non-
central Chi-squared distribution, with two degrees of
freedom [9). It can be shown that the distribution g(x) of a

bin D(k) containing a harmonic of amplitude %’g‘- and the
histogram noise is given by :

g(x) = w?Lexp(-L[b% + %] )L, (2n0,LV%) x>0 ©

Where I,(z) is the modified Bessel function of zero order.

1t should be noted that this expression is also independent
of N.

2.3 Classification

The classification is achieved by finding the maximum
DFT magnitude for the bins which are of interest, D(c,)

where o is the number of states in the nth PSK signal.
The classified signal is M-PSK where :

oy € MAX[D(at, )] (10)
e.g. when 1,2,4 & 8 PSK are to be classified, bins 1,2,4 &
8 of D(k) are examined, and if bin 4 is the maximum then
the signal is classified as 4 PSK.

2.4 Probability Of False Classification

Consider the bin containing the signal x with distribution
g(x), and n noise bins which are i.i.d. with distribution
p(y). The probability that the signal lies in the interval

X, X + Ox is given by
g(x)dx (11
The condition for correct classification is that the noise

signals are less than x. The probability of correct
classification in the interval is therefore :

g(x)[1- D(x)]5x (12)
where
®(x)= [ p(y)dy (13)
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When all of these contributions are summed and in the
limit of &x — 0, the probability of correct classification is
given by :
Peorr = j g1 - d(x)]"dx (14)

0

Which can be re-written as :

Peon = Z s ;,) [g00 (x)ex (15)
The probabllity of e?rror is given by :
i+l o
=1=Po = Z i 1;, 500 x)x (16)
From (8), ®(X) is given by :
@(x) = exp(—n’Lx) (17

Using (9) and (17) and [10] it can be shown that

r ibZL
j g(x)®d (x)dx = —1exp|:—-l—i-'1—:l (18)
Therefore the error probability is given by :
2 ni(-1)"! exol ib2L (19)
“(n-i)i+1)! iy
3. RESULTS

Plots of error probability against SNR are given in figure 2
for the case of CW, BPSK, QPSK and 8PSK being
examined with a sample length of 1024 points. This is
compared with simulated results, and it is found that the
model is accurate for CW and BPSK, but QPSK deviates
slightly, and 8PSK deviates further from the theory which
indicates that the Gaussian assumption of the noise
becomes less accurate. However the simulated results show
that the error probability is better than that which the
theoretical model suggests, and the two tend to converge at
error probabilities less than 1% which are the main areas
of interest.

This is compared with classification using the gth
statistical moment [2] (figure 3) and at a 1% error
probability. The first column of Table 1 shows the SNR
gain of the new technique and it is found that the new
technique is better in every case except 8 PSK. This is
because the statistical moments technique assumes that a
signal with a moment greater than that of 8PSK will not be
present. The second column is the same comparison when

16 PSK is also included, and it is found that the new
technique performs better in all cases.

Finally a comparison is drawn with the method of
maximum likelihood classification [4] (figure 4) and it is
found that the proposed method is close in error
performance in all cases except that of 8PSK where the
method is outperformed by 6.5 dB and lies close to the
error performance of QPSK. It should be noted that the
‘optimum’ method requires a heavy computational -
overhead for each sample along with knowledge of the
SNR of the signal.

4. CONCLUSIONS

A new method has been presented for the classification of
multi-level PSK signals which requires no prior knowledge
of the SNR of the signal unlike other deterministic
methods. The algorithm is extremely simple and fast to
implement requiring no complicated thresholding
calculations. The error performance is found to be good
and in certain cases it out-performs more complicated
techniques. The technique works well at high and low
SNR, and is proposed as an attractive method for the
classification of PSK signals.
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Figure 1 : Algorithmic description
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Figure 2 : Plots of classification error probability

against SNR For CW, BPSK, QPSK, 8PSK
for the DFT of phase histogram method
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Figure 4 : Plot of error probability v SNR
for the optimum classifier

CW-8PSK | CW-16PSK
CwW 4.3 39
BPSK 3 2.7
QPSK 4.3 4.2
8PSK -2.5 Large
16PSK Large

Table 1 : SNR gain (dB) of presented method, compared to
8th statistical moment when the error probability is 1%



