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ABSTRACT

This paper ! considers the performance of FH SS radio

networks in a Poisson field of interfering terminals using
the same modulation and power. Assuming -% attenua-
tion of signal strength over distance, the interference in the
network is modeled as a mixture of Gaussian and circu-
larly symmetric a-stable noise. The problem is relevant to
mobile communication systems where the mobility of users
requires random modeling of transmitter positions in the
network.
In this paper, we derive formulas for probability distribu-
tions of the interference in FH SS radio networks. We gen-
eralize the results of Ref. [1], where attention was limited
to Cauchy RV’s, a special subclass of stable distributions,
and where the effect of a background (Gaussian) noise was
neglected. Based on the formulas derived, we calculate the
probability of symbol error for radio links in environments
varying from urban settings to office buildings. The results
obtained allow the prediction of the performance of wireless
systems under a wide range of conditions.

1. INTRODUCTION

For frequency-hopped spread-spectrum (FH SS) radio net-
works, it is of interest to determine the probability of sym-
bol error for environments characterized by different atten-
uation of signal strength over distance [2], [3]. The interfer-
ence at the receiver has two components; self-interference
and external interference, such as thermal noise. The net-
work self-interference depends on: 1) the positions of net-
work terminals; and 2) the transmission characteristics of
each terminal. However, terminal positions are usually un-
known. To obtain the average performance of the network,
it is often assumed that the terminal positions are randomly
distributed on the plane. Assuming a ;—51; propagation
power loss law and in considering a link in a radio network
that is affected by a Poisson field [4] of interfering trans-
mitters, it has been shown [1] that self-interference has a
circularly symmetric a-stable (CS aS) distribution [5], [6],
[7]; this distribution depends on propagation conditions. In
(1], the aunthor limits his attention to multivariate Cauchy
random variables (RV’s), a special subclass of stable dis-
tributions. Moreover, the effect of a background, Gaussian
noise is neglected.

Most of the difficulty in analyzing systems with noise mod-
eled as i.i.d., stable RV’s arises because there are no closed-
form expressions for the the probability density functions
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(pdf’s) of stable distributions. The problem seems to be
even more complicated when one models noise as a mixture
of @S and Gaussian RV’s.

In this paper, we consider the noise at the receiver input in
FH SS radio networks as an additive combination of Gaus-
sian and oS noises. We concentrate on circularly symmet-
ric bivariate distributions. The objective of this paper is
to derive the convergent series for the pdf of distributions
under investigation and to calculate the probability of error
(Pe) for FH with an on-off keying (OOK) and non-ccherent
reception. The results are given in terms of network param-
eters and a length R of the transmitter-receiver link.

The results obtained are new, and they give more insight
into the analysis of the kind of systems described in this

paper.
2. SYSTEM AND INTERFERENCE MODELS

We assume that the signal amplitude loss function with the
distance r between a terminal and a receiver is given by

a(r) = = &)

In free space, when radio frequency (RF) power radiates
perfectly in a sphere from the antenna, the received power
will decay in proportion to the square of the distance be-
tween the transmitter and receiver corresponding to a value
of m =1in (1). In practice, m can vary from slightly less
than 1 for hallways within buildings to larger than 3 for
dense urban environments and office buildings [3].

We make the assumption that transmitting terminals are
distributed on the plane in accordance with the following
conditions:

1. The probability of k¥ transmitters, which use the same
frequency, being in a region R depends only on the
area A of the region R, and not on its shape nor its
position on the plane. This probability is is given by:

e~ M(A)*

Plk in R] = =

(2)
2. The numbers of terminals falling in non-overlapping
regions are independent RV’s.

3. The conditional distribution of the position of an en-
semble point in R under the condition that it falls in
this region is uniform, i.e., it has a distribution density
equal to 1/A.

Consequently, terminals using the same frequency form a
Poisson process with the expected number of terminals per
unit area given by A. The conditions imposed on the process
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characterizing the positions of terminals are satisfied with
great accuracy in many radio networks.
After being demodulated, the received signal is

Aty =s(t)+ Y _ a(r)zi(t) + n(2), (3)

where s(t) is the signal of interest, n(t) is Gaussian noise,
and the sum is the self-interference signal. The summation
is taken over all the interfering terminals from a Poisson
field [1]. After projecting the baseband signal onto the set
of n basis functions, the received waveform is represented
by an n dimensional vector:

Z=S+) a(r)Xi+N=S+Y+N. (4)

Because we consider the noncoherent detection and termi-
nals use the same modulation scheme, it is reasonable to
assume that the random vectors X; are independent and
identically distributed. Also, because all terminals transmit
at the same power, the distribution of X; is independent of

Ti.
If the RV’s X; are i.i.d. and CS, it is shown in Appendix
A that the characteristic function of the self-interference
vector Y is stable, i.e.,

¢y (t) = exp(—B)| Z £12%) = exp(—=1[t|*),  (5)

where |t| is the Euclidean (I2) norm of the vector t. The
parameter 3 is given as

p=-r [ 2o(z),, (©)

x

where o = 2/m; ®¢(z) = ®x ([t]) is a characteristic func-
tion of CS RV X;; and ’ denotes differentiation. This result
was first obtained in [1]. The proof presented in [1] is based
on the influence function approach [6] for calculating the
characteristic function of a multivariate Y. Our proof ex-
ploits the series representation of univariate a-stable R.V.’s.
It gives a more probabilistic interpretation of Y as opposed
to the analytic one presented in [1]. Moreover, our proof
gives new insight into the origin of stable distributions.
The characteristic exponent « in (5) controls the heavi-
ness' of the pdf tails (0 < o < 2): a small positive value
of « indicates severe impulsiveness, while a value of a close
to 2 indicates a more Gaussian type of behavior [7]. Like
a variance for Gaussian RVs, the dispersion v is the scale
parameter from (0, c0) and controls the spread around the
origin.

We assume that the Gaussian vector N i Is circularly sym-
metric, i.e., it has a pdf given by M,(0, o I), where I is the
identity matrix. Also, the the Gaussian noise component N
is independent of the self-interference noise component Y.
Therefore, the characteristic function of the total noise is:

2
4 a

oy N(t) = ¥(lt]) = exp(—-;ltl2 =% ()
In the case of FH with OOK, where a sinusoidal tone is
transmitted as the “on” symbol, the interference consists of
sinusoidal tones (n = 2); thus X; = [cos(©;), sin(©;)] where
©; is uniformly distributed in [0, 21] Moreover, ®o(z) =
Jo(z) [10], where J,(-) is a vth order Bessel function of the
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Figure 1. Dispersion as a function of «

first kind. Becauwse Jj(z) = —Ji(z), the formula 6.561.17
(p.708) from [9] can be used to calculate that for 0.5 < & <

I'(1-a/2) (8)
7°T(1 +a/2)

In this case, the admissible range of the path loss exponent
isl<m<4.

In Fig.1, § = +/A is plotted as a function of a. For a
wide range of a's, the dispersion is almost constant. As
a decreases, the tails of the CS a-stable distribution be-
come heavier and, if the dispersion is constant, the area of
the tails will increase. This means that the channel will be
more impulsive. Next, consider the range of o's in which a
considerable increase in dispersion is observed with increas-
ing a. As a decreases, the tails area does not necessarily
increase at the same rate as in the previous range.

B=m

3. MIXTURE OF CS 2-D GAUSSIAN AND
a-STABLE DISTRIBUTIONS

To evaluate the probability of symbol error for FH/OOK
with an envelope detector, we first determine the distribu-
tion of the total interference Y + N.

IfY is independent of the Gaussian vector N ~ N, (0, 0°I),
then [10] in the case of two-dimensional (2-D) distributions,
the pdf of Y + N is

Py, N(@) = / iy (1) expl 5 (v + 12 Flo( L2y,

(9)
where Io(-) is the modified Bessel function of the first kind.
To evaluate (9) when Y is CS a.S, we use the power series
representation for densities of | Y | [6]:

S oy 1y P

2,0 ly | E(
(10)

Because Io(z) = Jo(jz) [8], integrating term-by-term in
(9) and based on a formula 8.406.3, p.961, in [9] for
j:o Jo(at) exp(—p*t?)t*~1dt , we arrive at the relation

(Zk 2)

Py () = ‘Tt PG

Py, N(z ‘2——2 (11)
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2k42
where ks = (—1)* :'—f}’;-)klk_;i——), and L(-) is a kth order
Laguerre polynomial.
The application of formula (11) is limited because of the
oscillating character of coefficients h;. Using the inverse-
Fourier approach, the pdf of 2-D CS RV Y + N is also
given by the Hankel transform [11]

pY+N(z) = %‘/o ¥(z)zJo(|z|z)dz, (12)

where (-} is the generating characteristic function of Y +N
asin (7). In numerical calculations, (12} is more practical.
Although we evaluated in this section the pdf of 2-D Y+N,
the same approaches are applicable for higher dimensions.

4. PROBABILITY OF SYMBOL ERROR

For equiprobable binary signaling in the FH/OOK scheme,
two hypotheses are considered. The first H; states that “1”
is transmitted, and the alternative Ho states that no signal
is present. For maximum likelihood reception, the calcula-
tions are based on the joint pdf of 2-D RV Z = (Z1,22)
as in (4). The receiver computes the following likelihood
ratio:

_pZ|H1(z) I:I>_1
PZ|HO(Z) lfo

Under the hypothesis H;, the RV’s Z; and Z; will have
the signal components (cos ©)/R™ and (sin ©)/R™, respec-
tively, where © is the phase angle uniformly distributed on
[0,27] and R is the link distance. Thus,

1. (13)

Ho : pz'Ho(z)= pY+N(Zl,22)
H 12T cos © 3in @ (14)
1: Pz, (D)= 5=f) Py 4Nl — 2, 22 - 57)dO

After some manipulation, it can be shown that the like-
lihood ratio in (13) is a function of single variable p =

) 2
z7 + 23

f:" fooo ¢(x)x.70(x\/p2 + 53w 2%—e—dxd@
2 [ w(x)xJo(xp)dx

A(p) = (15)

For sub-optimum reception, we need the threshold p* for
which A(p) = 1. It is difficult to find a general formula
for p*, so we approximated it for different values of a cor-
responding to different environments (see Table 1). The
results obtained depend on the expected density of termi-
nals A using the same frequency. We express our results
in terms of the parameter N, which is defined after [1] as
N = ArR?. The parameter N is equal to the expected
number of interferers that are closer to the receiver than
is the transmitter. We assume that the level of Gaussian
noise relative to that of the a-stable noise is 0.5¢% = 0.17.
The average Pe is computed as

Pe = 0.5( Plerror|0]+ Plerror|1)). (16)
The conditional Pe given “0” can be calculated numerically
using [11]

oo

Plerror|0] = P({Z| > p* |Ho) =1 - / PY(x)xT1(xp*)dx (17)
0

The conditional Pe given “1” can be obtained from (14)
based on (11) or using some form of approximation based
on (12). Results for N = 0.01 and N = 0.04 with R =1
are summarized in Table 1.

The results presented in Table 1 were obtained using Mat-
lab. The number of terms used in calculating infinite series
and integrals was adjusted as to achieve convergence in the
last significant digit. This approach could result in small
quantitative errors; however, it gives a general idea of the
link-level performance of the radio network.

In general, the Pe deteriorates as the parameter N in-
creases. This is expected because, as N increases, the self-
interference becomes stronger. Moreover, in the cases ex-
amined, the performance of the link improves with a de-
crease in o because the dispersion of the noise is smaller
with decreasing «. This effect counterbalances an increase
in impulsiveness of noise with decreasing o. For optimum
performance, the threshold p* should increase with an in-
crease of N and decrease with decreasing o.

5. CONCLUSION

We have considered a link in the FH SS radio network that
is affected by a Poisson field of transmitting terminals. A
mixture of Gaussian and o-stable noise was used to model
the system interference. A new proof was given showing
that the self-interference is indeed CS a-stable in the net-
works under consideration. The functional series represen-
tation was obtained for the pdf of the system interference."
Based on the formulas derived, the probability of error was
examined for radio links in different environments.

With the proliferation of personal communications systems,
analytical results that describe the performance of wireless
systems in realistic situations are becoming increasingly im-
portant. Therefore, we expect that the analysis presented
will be useful in systems where non-Gaussian statistics are
important.

A SELF-INTERFERENCE DISTRIBUTION

In the following, we give a new proof that the characteristic
function of the self-interference RV Y is indeed a-stable.
Without loss of generality, we assume that A = 1. We

rewrite Y as 1
1
Y=xn=~ X.. 18

For Poisson points distributed on the plane, 7r? represents
“occurrence” times, and for a homogeneous field, =r? is
gamma distributed [4]. In each coordinate, the sum in (18)

has the form R
Yie = Zri_axi,l/m (19)

where X; ;2 is a symmetric univariate distribution. From
Theorem 1.4.2 in 7], ( p.23), a RV Yj;; is symmetric a-
stable (SaS) with the dispersion

y=CJ'E|Xi|% (20)

— l—a
where Co = TGa)cos(mala)” Moreover, each summand

-1
T', * X1/ is univariate a-stable with the same dispersion.
Because the bivariate RV X, is CS, and because the coor-

-1 L.
dinates of I'; * X, are a-stable with the same characteristic
exponent o« and dispersion, the sum in (18) is CS a-stable
with the characteristic function

¢y (t) = exp(—7[t]%), (21)
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Table 1. Pe for different environments

Environment | Path Loss | Ch. exp. | Norm Dispersion | N = ArR? | Threshold | Plerrox{0] | Plerror|]
m o B=v/A [1077] p*

Urban I 1.1 %% 30887 1 0.66 0.041 0.053
4 0.67 0.378 0.115

Urban II 1.5 ) L177x 1 0.64 0.022 0.007
4 0.65 0.083 0.035

Indoor 1 2 1.0 T 1 0.63 0.029 0.005
4 0.64 0.065 0.015

Indoor II 2.5 5 0.9647 1 0.63 0.032 0.004
4 0.63 0.059 0.010

Residential 3 H 0.9557 1 0.63 0.033 0.003
4 0.63 0.054 0.007

where v is as in  (20).
To complete the proof, we show that the dispersion in (20)
is the same as the dispersion obtained in [1]

ﬂ = —T/ (DO(az) dz,
o T

where ®o(z) = ®x (|t]) is a characteristic function of CS
RV X;. First, we observe that the generating characteristic
function ®(-) of the CS RV Y is the same as the character-
istic function of X ;/, [5]. Next, we manipulate F | X; |*
into
E|Xi* = [J7, 1z]%px(c)ds
= [Z Nz sga(z)epx(z)ds,

where px () is the pdf of X 1/,. To calculate E | X; |*, we
apply the Parseval Theorem to the last relation

1 /°° —2wsin(ra/2)T(a)sgn(z) d@o(z)dz'

2r |z |» dz

- 00

(22)

(23)

EF|X;|*=

(24)
The Fourier transform of [ z |*~! sgn(z) can be found
in [9], (17.23.25,pg.1185). To show the equivalence of the
dispersion in (20) and (22), we need

2Cq sin(ra/2)T (a) = 7. (25)

This can be verified using the following relations

T(z)[(1~2) = —=

sin(wz)?

T(z+1) = zI(z).
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