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ABSTRACT

We address the problem of estimation of the parameters
of the recently proposed symmetric, alpha-stable mode! for
impulsive interference. We propose new estimators based
on asymptotic extreme value theory, order statistics, and
fractional lower-order moments, which can be computed
fast and are, therefore, suitable for the design of real-time
signal processing algorithms. The performance of the new
estimators is evaluated theoretically and via Monte—Carlo
simulation.
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1. INTRODUCTION

One physical process, which is not adequately described in
terms of Gaussian models, is the process that generates “im-
pulsive” interference bursts. Impulsive bursts occur in the
form of short duration interferences, attaining large ampli-
tudes with probability significantly higher than the prob-
ability predicted by a Gaussian probability density func-
tion (pdf). Many natural, as well as man-made, sources
of impulsive inteference exist, including lightning in the at-
mosphere, switching transients in power lines and car ig-
nitions, accidental hits in telephone lines, and ice cracking
in the arctic region [1, 2]. Impulsive interference can cause
significant degradation of the performance of conventional
{Gaussian) communication, radar, and sonar systems and
nonlinear signal processing algorithms are needed to filter
it out [3, 4, 5, 6, 7].

Several models have been proposed for the description
of impulsive interferences, including parametric statistical-
physical models such as the Middleton model [3] and empir-
ical models such as mixtures of Gaussian and non-Gaussian
or other heavy-tailed distributions (e.g., [8, 9]} Very re-
cently, a new statistical-physical model was proposed for
impulsive interference [2, chapter 9]. In particular, it was
theoretically shown in [2, chapter 9] that, under general as-
sumptions, a broad class of impulsive noise has a symmet-
ric, alpha-stable (SaS) first-order distribution [10, 2]. The
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new model provided a significant reduction in complexity
when compared to the Middleton model; however, tests on
a large variety of real data demonstrated no loss of accuracy
relatively to the Middleton model {2, chapter 9].

The problem of estimation of the parameters of a SaS
model has been addressed in the literature, mainly within
the framework of Modern Statistics, and a number of ap-
proaches have been proposed to it (see [10, 2] and references
therein). However, major difficulties are encountered when
the classical estimation methods of Statistics are applied
to this particular problem. The main source of these dif-
ficulties is the lack of closed—form expressions for the gen-
eral SaS pdf. In this paper, we propose alternative estima-
tors for the parameters of SaS distributions from observa-
tion of independent realizations of it. The new estimators
are based on the asymptotic distributions of the extremes
(maxima and minima) of collections of random variables,
on order statistics, as well as on certain relations between
fractional lower-order moments and the parameters of the
distribution. These estimators are shown to maintain ac-
ceptable performance, while, at the same time, are simple
enough to be computable in real time. These two prop-
erties of the proposed estimators render them very useful
for the design of algorithms for statistical signal processing
applications.

More specifically, the paper is organized as follows: In
Section 2, we present theorems regarding the asymptotic
distribution of the extreme order statistics of collections of
independent, identically distributed (iid) SaS random vari-
ables with particular emphasis on the aspects of the theory
that will be used in subsequent sections. In Section 3, we
state the problem of estimation of the parameters of an
iid sequence of stable random variables, which is the main
concern of this paper, and propose estimators which can
be computed very fast and are, therefore, suitable for real-
time signal processing. The performance of these estimators
is evaluated theoretically and via Monte—Carlo simulation.
The paper is summarized and concluded in Section 4, in
which we also propose avenues for future research.
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2. ASYMPTOTIC DISTRIBUTION OF
EXTREMES OF SaS RANDOM VARIABLES

Asymptotic Extreme Value Theory (AEVT) is the field of
statistical analysis studying the distributions of extreme or-
der statistics (maxima and minima) of collections of random
variables. As such, it is very important in many engineer-
ing disciplines in which the laws of interest are governed by
extremes. In the fields of communication theory and signal
processing in particular, AEVT has found application in
the estimation via extrapolation of very small probabilities
involved in the assessment of the performance of communi-
cation devices and signal processing algorithms [11]. Two
theorems are given here regarding the asymptotic distribu-
tions of the extremes of collections of iid SaS random vari-
ables. A more complete presentation of the field of AEVT
and further applications can be found in the statistical lit-
erature [12, 11].

2.1. Symmetric, alpha-stable distributions

We can define the symmetric, alpha-stable (SaS) pdf f(-)
via the inverse Fourier transform integral:

Fal1,5:8) = = f exp(idw — 2wl T)e“ dw, (1)

where the parameters o (characteristic exponent), v (dis-
persion), and § (location parameter) relate to the heaviness
of the tails, the spread, and the point of symmetry of the
pdf, respectively [10, 2].

2.2. Frechet asymptotic distribution of extreme or-
der statistics

Let X1, X32,..., Xk be a collection of independent realiza-
tions of a SaS random variable with pdf (parent pdf) fa(:)
and cumulative distribution function {cdf) Fa(-). Let X
and X denote the maximum and the minimum in the se-
quence. We will refer to X and X as the eztreme order
statistics of the collection. Let us also define the trans-
{ormed extreme order statistics T = log X and £ = —log(—X)

Theorem 1 There exists a sequence {bx}, K =1,2,3,.. ,
such that b > 0 for all K and, as K — oo,

b farrc(bx€) = Fal€) (2)
b fm:x(b6€) — £ () (3)
where far.k(-) and fm:.x(-) are the exact distributions of the

mazimum- and minimum-order statistics, respectively, of a
sequence of length K [11, chapter 2] and

fa(8) = {g’“"aexp(—s‘“) if€>0 @

otherwise.

.8

otherwise.

{ (- a7 HESO )

11t can be shown that, as K — oco. X > 0and X < 0 with
probability one.

The distributions f(-) and £, () in Eqgs.(3) and (4) are the
Frechet distributions for maxima and minima, respectively.

For the transformed extreme order statistics, we have
the following:

Theorem 2 Given the sequence {bx'}, K = 1,2,3,..., of
Theorem 1, the asymptotic distribution (Gumbel distribu-
tion) of the transformed extremes, as K — oo, is

fx\c;,m(.fhﬂl) =

exp(— '—“—)EXP[ exp(— 0K Ac”‘)]

ba
exp('-'G—“—)exp[—exp(—:G—‘E——‘)]

Ty (6)

where bg = 1/a, A,k = log(bx), and Ag.x = —log(bx).

The proof of Theorems 1 and 2 can be found in [13].
These results allow us to approximate the exact distribu-
tion of the extreme order statistics, which depends strongly
on knowledge of the exact parent pdf, with asymptotic dis-
tributions, valid for long sequences (large K') and dependent
only on the tail behavior of the parent pdf.
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Figure 1: Illustration of the convergence to the asymptotic
extreme distribution for a Cauchy (i.e., S(a = 1)8) parent
pdf: (a) The Cauchy pdf; (b) The Cauchy cdf; (c) Exact
(solid line) and asymptotic (dotted line) pdf of the maxi-
mum of a collection of K = 100 iid Cauchy random vari-
ables; (d) Exact (solid line) and asymptotic (dotted line)
cdf of the maximum of a collection of X' = 100 iid Cauchy
random variables.

The convergence of the true extreme distribution to the
asymptotic one is illustrated in Fig. 1 for a Cauchy pdf.
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In particular, Fig. 1a shows the Cauchy pdf of zero loca-
tion parameter and unit dispersion, i.e, the pdf f1(1,0;¢) =
(1/m)[1/(1 + €?)]. Fig. 2a shows the corresponding Cauchy
cdf, i.e., F1(1,0,€) = 1/2 + arctan(z)/x. The exact (solid

line, fa, x=100(£) = 100F199(l10;£)f1(1,0; £)) and the asymp-

totic (dashed line, (1/bx=100f;(£/bKx=100)) pdf of the max-
imum of a collection of K = 100 iid realizations of the
Cauchy random variable are shown in Fig. 1c. Finally,
Fig. 1d shows the corresponding extreme cdfs. From Figs. 1c
and 1d, the high accuracy of the asymptotic approximation
becomes clear, since it is almost impossible to tell the exact
from the asymptotic distribution.

3. ESTIMATION OF THE PARAMETERS OF
ALPHA-STABLE IMPULSIVE INTERFERENCE

3.1. Problem formulation

Let X1, X2,..., X~ be observed independent realizations of
a SaS random variable X of unknown characteristic expo-
nent «, location parameter 4, and dispersion y. We attempt
to estimate the exact parameters of the SaS distribution of
X from the observed realizations.

3.2. Proposed algorithm for estimation of the char-
acteristic exponent o

Consider a segmentation of the data into L nonoverlapping
segments, each of length K = N/L:

(X1, Xz, ..., Xn} = {X(1),X(2), ...

where X(1) = {Xq—1)n/L41, Xg—1)n/L42, - -
1,2,..., L.

Let X; and X, be the maximum and the minimum of
the data segment X(I). We then define

T = log X (8)
—log(-X,) (9)

and the corresponding standard deviations

XD} (7)
. «XIN/L}y l =

x,

)
i

Il
=
M

zZ; (10)

L
(T
=1

]
1
-

z,. (11)

M=

(z, — z)% z

I
-
M-

1

1

1
§=\Z-—1

With these definitions in mind, the estimate for the char-
acteristic exponent a of the SaS pdf takes the form

f= " (1.1
a—2\/6(§+§)‘ (12)

Theorem 1 The estimator & of the characteristic expo-
nent a of a SaS distribution is consistent and asymptoti-
cally normal with mean equal to the true ezponent a and
variance 2L9",, (pa,G — f—:%sg; Ja, as N 3> 00 and L -
such that N/L — oo. In the expression for the asymp-
totic variance of the estimator, ps,c is on the order of ;1;-;
therefore, the asymptotic variance of the estimator is on the
order of o®.

3.3. Proposed algorithm for estimation of the loca-
tion parameter §

For the estimation of the location parameter § of a SaS
pdf, we propose the use of the sample median of the obser-
vations, i.e.

§ = median {X1, X2,..., X~} (13)

where the sample median is defined as follows: If the sample
consists of an odd number N of observations, the median
is defined as the center order statistic. If the sample con-
sists of an even number N of observations, the median is
defined as the average of the two center statistics. The sam-
ple median forms the maximum likelihood estimate of the
location parameter of a Laplace (double exponential) distri-
bution and, therefore, enjoys all the properties of maximum
likelihood estimators in that case. Its performance as an es-
timator for the location parameter § of a SaS pdf can be
expected to be very robust. In fact, we have shown [13]
that this estimator performs very closely to the maximum
likelihood estimator for the case of a SaS pdf.

Theorem 2 The estimator § of the location parameter §
of a SaS distribution is consistent and asymptotically nor-
mal with mean equal to the true parameter § and variance

1/
ra 21
(-——"————21,(1/&) 7, a8 N — oo.

3.4. Proposed algorithm for estimation of the dis-
persion ¥

For the estimation of the dispersion 4 of a SaS pdf, we
propose the following estimator which is based on the theory
of fractional lower order moments of the pdf:

1 N 517
2 N Zk:l IXk - 6' ':'
= = ) 14
= (M T (19
where C(p, &) has been defined as
C(p, &) = ——— L1 =p/%) (15)

cos(Zp) I'(1-p)

and the choice of the order p (0 < p < %) of the fractional
moment is arbitrary.

Theorem 3 The estimator ¥ of the dispersion of a SaS
distribution is consistent and asymptotically normal with
mean equal to the true dispersion v and variance lﬁ(mzp -
2 e (GBI 2 .
mp){;-Jzn';)——} ,a5 N = o0 and L — oo with K =
N/L — co. With my, and mqp, we have denoted the pdf
moments of fractional orders p and 2p, respectively.

3.5. Monte-Carlo evaluation of the proposed algo-
rithms

We tested the proposed algorithms via 1,000 Monte-Carlo
runs in which we chose N = 5,000, L = 50 (i.e., K = 100),
and p = % for the cases @ = 0.1, 0.5, 1, and 1.5, v = 1,
and § = 1. The following tables summarize our findings for
v =1 and v = 10, respectively, showing the mean and the
standard deviation (in brackets) of our proposed estimators.
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[ Table 1: v=1 ]
[e 4
0.1 [ 05 [ 10 [ 15
0.1031 0.5167 | 1.0351 1.6107
&
(0.0107) (0.0538) | (0.1072) | (0.1725)
1.000 0.9994 | 0.9998 | 0.9990
é
(6.94 x10~7) | (0.0110) | (0.0213) | (0.0237)
1.0421 1.0468 | 1.0480 | 1.0966
.‘i,
(0.1209) (0.1201) | (0.1200) | (0.1429)
Table 2: vy =10 |
a
0.1 | 05 [ 10 J 15
0.1030 0.5116 1.0386 [ 1.6140
&
(0.0109) (0.0532) | (0.1066) | (0.1760)
58.6915 0.9979 | 1.0106 | 1.0025
é
(8.4604 x10%) | (1.1096) | (0.2129) | (0.1138)
11.8845 11.5582 | 12.2093 | 14.0672
:5,
(4.8725) (4.4013) | (5.5068) | (6.3089)

From Tables 1 and 2, we immediately draw the following

conclusions:

1. The estimator & of the characteristic exponent a be-
comes less accurate in terms of both bias and error
variance as « gets closer to the Gaussian value a = 2.
Its performance, however, is independent of either the
location parameter & or the dispersion v of the inter-
ference.

. The estimator & of the location parameter & is very
efficient; however its performance decreases with de-
creasing a and increasing v (i.e., with more impulsive
interference). '

. The estimator ¥ of the dispersion ¥ requires either
knowledge or prior estimation of both the character-
istic exponent and the location parameter of the in-
terference. -

4. SUMMARY, CONCLUSIONS, AND
POSSIBLE FUTURE WORK

In this paper, we presented algorithms for estimation of the
parameters of symmetric, alpha-stable impulsive interfer-
ence from independent observations. The algorithms em-
ployed several results from asymptotic extreme value the-
ory, order statistics, and fractional lower-order moments
and were analyzed both theoretically and via computer sim-
ulation. In the future, it seems interesting to extend the
algorithms to the case of estimation of the parameters of
arbitrary ARMA models from observation of their output
only and to perform an extensive study of the properties
and the performance of those and other related algorithms.
This research has been initiated and its results will be an-
nounced shortly.

(10]

(11]
(12]

[13]
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