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Abstract

In this paper the computational issues for symmetric
wavelet transforms are investigated. We present a novel
frequency-domain algorithm using the discrete cosine trans-
forms (DCTs) and discrete sine transforms (DSTs). A high
efficiency is achieved when this algorithm is applied to signals
of finite duration, especially images.

1 Introduction

Recently, special attention has been paid to the wavelet
transform (WT) where the wavelet is symmetric with respect
to a zero or non-zero axis[1]. This type of WT is important in
signal processing since a symmetric wavelet corresponds to a
linear filter which does not produce pattern distortions in the
processed signal. It is well-known that an orthogonal wavelet
cannot be symmetric if its support is finite and the same func-
tion is used for analysis and synthesis. In practice, however, a
filter of infinite length may not cause any significant problem
since the filter can be truncated as long as the filter coefficients
attenuate sufficiently fast[1]. The error due to truncation de-
creases as the filter size increases, but the computational cost
increases rapidly when the WT is computed directly in the
time (or spatial) domain.

This paper presents a filter-size-independent computa-
tional approach where symmetric WTs are computed in the
frequency domain by the discrete sine and cosine transforms
(DSTs and DCTs). The DCTs and DSTs[2] have been exten-
sively studied. Well-designed algorithms have been incorpo-
rated into various software packages and hardware devices.
Our work connects symmetric WTs to the DCTs and DSTs,
enabling us to take the advantage of these efficient algorithms
for fast processing of signals and images.

2 Rationales

It is well known that convolution between a pair of sig-
nals can be computed by taking the DFT on these signals,
multiplying the results, and then computing the inverse DFT.
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The total operation count for the whole computational pro-
cess is roughly nN log N, where N is the size of the longer
signal and 7 is an algorithm-dependent factor. The DFT is
a complex-valued transformation where each complex multi-
plication requires six floating-point arithmetic operations. As
a result, the value of 7 may be very large, suggesting a low
computational efficiency. We approach this problem by con-
verting the DFT to the DCTs and DSTs which require fewer
floating-pointoperations. This conversion is possible because
of the symmetry present in the data. We first mirror-extend
the inputsignal at the borders and then transform the extended
signal to the Fourier domain using the DCT. The linear-phase
filters corresponding to the wavelet and scaling function are
also transformed to the Fourier domain (via the DST and
DCT) where the convolutional operations in the conventional
algorithm[3] are replaced by much simpler operations of mul-
tiplication and duplication. Once the desired wavelet scale
level is reached, a DCT is applied again to obtain the time (or
spatial) domain result.

3 DCT/DST Formulation

Let the input signal, £(n), have N + 1 discrete samples
indexed by n = 0,1,---,N — 1, N. We make a mirror-
extension which duplicates the signal at each border by setting
z(1) = z(2N - 1),z(2) = (2N - 2),---,z(N - 1) =
z(N+1),z(N -2) = z(N +2), - - . Appendix 2 shows that
the DFT of z(n), X (k), can be written as

X(k) =2 -DCTY [rnz(n)] (1)
where
%, n=0,N
Ty = .
1, otherwise.

and DCT}, is the Type I DCT (Appendix 1).

Let h(n) and g(n) be, respectively, the low-pass and high-
pass filters corresponding to the wavelet and scaling function.
We have previously shown([1] that h(n) can only possess
an even-symmetry, while g(n) can be either even- or anti-
symmetric. We have also shown that the axis of symmetry
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is either an integer (usually zero) or a half-integer (usually
#0.5). In order to compute the WT, we first pad zeros beyond
the last non-zero sample on either side of each filter forming
a sequence of length 2N, and then convert the DFTs of k(n)
and g(n) to DCTs and DSTs.

3.1 Conversion of h(n)

Let h(n) be even-symmetric with respect to 3. When 8 = 0,
we have! h(n) = h(—n), and the DCT conversion is similar
to thatin Eq. (1), i.e.,

H(k) =2 -DCTh[rah(n)] (2)

Alternatively, when 8 = 1/2 + r, where r is an integer, we
have, by Appendix 2,

H(k) = 2e~*CHDNDCTY [h(n + 74+ 1)]  (3)

where DCT3,[h(n)] is the Type Il DCT ( Appendix 1).

32 Conversion of g(n)

When g(n) is even-symmetric with respect to zero, the result
is identical to that given in Eq. (2) except that symbols / and
H are replaced by g and G.-On the other hand, when g(n) is
anti-symmetric with respect to o, the following results can be
shown (Appendices 1 and 2):

If o = 0, we have g(n) = —g(—n), and

G(k) = —2ie"""*"/NDST\ [g(n + r)]

On the other hand, if # = 1/2 + r, where r is an integer,
we have g(n) = —g(2r +1 — n) and

G(k) = —2ie~ "k(r+1)/CN) DTS, [g(n + r)].

4 Fourier Domain Computation

The Fourier domain equivalence of the conventional
algorithm[3] is given by

Waist (k) = Szj(k)sz(k) and (4)

Spiwi (k) = Sp5(k)Hpi(k). 5
This algorithm is initialized by Sy (k) = X(k), Hyp(k) =
H(k) and Gy = G(k). The “standard form” of the forward
WT involves a down-sampling process (also called decima-

tion) between scale levels. Thus, the total number of wavelet
coefficients obtained is the same as the input data. In some

1The use the negative index with respect to the modulo of the signal’s pe-
riod. In this case, A(n) = h(—n) is equivalentto h(n) = h(—n) mod 2N

image processing applications (e.g., edge detection), however,
the decimation process is often purposely eliminated and the
number of coefficients is kept the same in all scale levels. Due
to the presence or absence of this decimation process, there
are two different ways to implement (4) and (5).

WT without Decimation In this case, the number of
samples in each of S5;(k), Wa;(k), Hai(k) and Gy (k) re-
mains the same for all values of j. Since filter h,;(n) is formed
by adding a zero to every adjacent samples of hy;_i(n), we
have Hy;(k) = Hj;-1(2k) which implies that H,; (k) can be
obtained without any arithmetic operations. The same argu-
ment applies to G,,{k). Figure 1 illustrates this process where
the curve on each disk represents | H,;(k)|. Any angular area
givenby § = 2~/ x contains a set of 2~/ N independent values
of H 27 (k)

WT with Decimation In this case, the sizes of S,; (k)
and W,; (k) decrease by one-half for each increment of j. Let
Z(2n) = 2(n), where 7(n) and z(n) are, respectively, any 2N’
and N’ periodic sequences. Then, it can be verified, by using
the identity 35" 7(2n) = (1/2) S22 #(m) {14 (~1)"],
the DFTs of z(n) and Z(n) are related by

Z(k) = %[Z(k) + Z(k + NY)]. (6)

Eq. (6) indicates that H,;(k) and G,;(k) can be generated
from Hj;-1 (k) and G,;-1(k) by an averaging process as illus-
trated in Figure 2.

When the inverse WT is desired, the frequency domain
algorithm is given by

Syi-1(k) = Wi (k)Gai=i (k) + Sps(k)Hyi1 (k)  (7)

where the top bar denotes complex conjugate. The algorithm
starts from j = J and ends with j = 1.

5 Conversion to the Time Domain

It has been shown[1] that the values of o and S (axes of
symmetry) cannot be zero at the same time. Therefore, the
results of the WT must contain displacements which may be
considerably large if the WT is computed without decima-
tion. By using (4) and (5) repeatedly, it can be shown that
S2i(k) = Y, (k)™ /N and Wy, (k) = —iY,, (k)ei™1e/N,
where Y, (k) and Y,, (k) are real-valued periodic functions,
and v, = —f3(2/ — 1) and v, = B — (B + a)2/~, respec-
tively, are the displacements in s,; (n) and w,;(n) withrespect
to the input signal z(n). Using these results, the time domain
signals s, (n) can be written into two types of DCTs:

Casel. 4, isan integer. We have Y, (k) = Y,(—k) and

sw(n=7) = POCTHGEL @
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Case 2.
and

7, is a half-integer . We have Y, (k) = —Y,(—k)

®)

where DCT?, is given in Appendix 1 and |v,] = v, — 1/2.

The case of W,; (k) is similar to that of Sy; (k) except that
7w is the control factor and that the DFT is converted to the
DSTs. There also exist two cases:

s5(n — 1)) = - DCT [ras (8)

Casel. - 4, isaninteger. We have Yy, (k) = Yy, (—k) and
TRA
. — ; —ir(n+yw)k
wii(n— Yw) = IN ,,Z_; (—1) Yy, (k)e " (m 1)/ R )
1
= WDST}V[Yw(k)]. (11)
Case2. =, isahalf-integer. Wehave Yy, (k) = —Y, (k)
and

wps(n = [o]) = %{—DST?V[rka(k)]

where DSTS, is given in Appendix 1 and [7,] = 7, + 1/2.

(12)

6 Comparison of Efficiency

We demonstrate the computational efficiency of the
DCT/DST approach through an example. We assume h(n) =
h(—n)and g(n) = g(—2—n) and require that the 2-D spatial-
domain results s;;(n, m) and w,;(n, m),for j = 1,2,3,4,be
computed (the worst case for the DCT/DST approach). The
input is a 512 x 512 image which is first fully decomposed
and then reconstructed from the spatial-domain wavelet coef-
ficients. For simplicity, we exclude the arithmetic operations
that are common to all algorithms.

Three algorithms are compared: 1) conventional WT[3],
2) DFT, and 3) DCT/DST. In the second algorithm, we simply
use the DFT (implemented by the FFT algorithm) to compute
convolutions. In the third algorithm, we apply the FFTP
algorithm[4] to compute the DCTh,. The number of arithmetic
operations Oy, O3, and Os, respectively, corresponding to the
three algorithms are given by

01 =32 x (4M +1)N? ~ 8.389 x 105(4M +1) (13)

O, = 208N%log, 2N 4 56N% ~ 5.599 x 10%, and (14)
O3 = 52N?%log, 2N —22N? ~ 1.305 x 108 (15)

where M is the size of the truncated filter. By comparing
among O,, O; and Os, it is clear that the conventional WT
is the most efficient algorithm if the filter size is extremely
short, as in the case of the Haar wavelet. For3 < M < 16,
the DCT/DST becomes the more efficient algorithm. When

M = 20, the computational efficiency of the DCT/DST is
approximately 5.2 times of the conventional WT and 4.3 times
of the DFT. Furthermore, it is noticed that the number of
operations required for the DCT/DST can be further reduced
when the spatial domain s,;(n, m) and w,; (n, m) do not have
to be evaluated for every j.

7 Conclusion

We have developed an efficient approach to the compu-
tation of symmetric WTs using the DCTs and DSTs. This
approach allows us to apply sophisticated DCT/DST algo-
rithms and permits the use of long filters without affecting
computational efficiency.

Appendix 1 Six Types of DCTs and DSTs

We define six types of the discrete cosine transforms
(DCTs) and discrete sine transforms (DSTS) as follows:

N
wnk
DCTy[z(n)] = > z(n —_ 16
4 o) nzzo()wS(N) (16)
2 pdy 7r(n+0.5)k
DCTy[z(n)] = 3 _ z(n)cos (T) (17)
n=0
N-1
3 _ m(n+0.5)k
DCTN[X(k)]_;X(k)cos (——-————N ) (18)
gl mnk
DSTY [z(n)] = z(n)sin [ — 19
M= =y () 09
N
DSTY[z(n)] = 3 2(n)sin (W) (20)
n=I1
N
DSTS, [X(6)] = 3 X (k)sin { TR=090kY gy
M = 3o xwsin (TPE).

These definitions may be slightly different from those found in
the literature[2]. We point out that a unification of definitions
can be made by normalizing and scaling the inputs.

Appendix2 Conversion from DFT to
DCT/DST

In this appendix, we present six cases of conversion be-
tween the DFT and the DCT/DST.
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Casel yi(n)=u(-n): The signal is an even func-

tion and its DFT is given by

2N-1

N
Yl(k) — Z u (n)e—iwnk/N + Z n (n)e—iwnk/N (22)
n=0 n=N+1

Changing summation variable yields

N
Yi(k) =2 rau(n)cos(rnk/N) = 2DCT [ray1 (n)]

n=0

(23)
1
. _ 3, N= 0, N
with r, = { 1, otherwise
Case2 y(n)=—p(-n): The signal is an odd func-

tion implying 1 (0) = 1»(N) = 0. The DFT of y,(n) can be
derived in a similar fashion as in Case 1, the result is

Ya(k) = —2DSTiy[ya(n)]. (24)
Case3 y3(n)=y(28—n): ys3 1s an even-symmetric
signal with respect to an integer 8. Since y3(n) = yi(n — ),
the circular shift property of the DFT yields

Ya(k) =27 FAINDCTY [rats(n + 8)]. (25)
Cased y(n)=—wu(a—n): Y4 is an anti-symmetric
signal with respect to an integer . A procedure similar to
case 3 shows

Ya(ky = —2ie~*"**/NDST [wu(n + a)].  (26)
Case 5 ys(n) = ys(2r+1—n): It can be checked
that the center of symmetry of ys(n) is located at 8 = (2r +
1)/2 which is a half-integer. Taking the DFT of ys(n) and
manipulating indices, it can be shown that

Ys(k) = 2e R+ D2NDCTY [ys(n 4+ r + 1) (27)
Case6 ys(n) = —ys(2r+1—n): ys(n)isan antisym-
metric signal with respect to a half-integer « = (2r +1)/2.
A derivation similar to case 5 yields

Yo(k) = —2ie~ "k +)/CNDSTL [ys(n + 7)) (28)
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Figure 1  The periodic nature of H,; (k) is illustrated

- by the hatched disks. The curve on each disk repre-

sents |Hy;(k)[. Since H,,(k) = H,;-1(2k), the curves
duplicate and narrow themselves as j increases. How-
ever, the number of slots in each of the disks is equal to
2N regardless of the values of j. '

Figure 2 Due to the decimation process, the num-
ber slots in H,;(k) reduces by half with each increment
of j; however, the spectral profile of H,;(k) keeps un-
changed.
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