PARALLEL COMPUTATION OF HIGHER ORDER MOMENTS ON THE MASPAR-1 MACHINE

John N. Kalamatianos

Elias S. Manolakos

Communications and Digital Signal Processing Center
Electrical and Computer Engineering Department
Northeastern University, Boston, MA 02115

' e:xmail elias@cdsp.neu.edu

ABSTRACT

The design of efficient parallel processing implementa-
tions for speeding up the computationally intensive esti-
mation of Higher-Order Statistics (HOS) has been rec-
ognized as an important task by the signal processing
community [1]. In this paper we report on the synthe-
sis of minimum running time (latency) deta-parallel al-
gorithms that can be employed to compute all moment
lags, up to the 3rd or 4th-order, on the MasPar-1 Sin-
gle Instruction Multiple Data (SIMD) parallel system.
By construction the synthesized SIMD algorithms require
constant memory per processing element (PE), thus al-
lowing the processing of 1-D input data sequences with
as many as M = 21° data samples. Simulation results
are presented showing the gain in speedup and execution
times, as compared to optimized versions of the serial
estimation algorithm running in powerful workstations.

1. INTRODUCTION

Estimating Higher-Order Moments (HOM) from the data
has become an increasingly important task in modern sig-
nal processing. Third and 4th-order moments play an
important role in many applications but are also useful
in computing the Bispectrum and Trispectrum [1]. It is
well known that their estimation from the input data is
a computationally intensive task, especially as the length
of the sequence and the order of the desired estimates
increases. In such cases, some form of parallel processing
is needed if real-time performance is required.

In [2], [3] and [4], a systematic algorithm to archi-
tectures transformation approach was used to synthesize
regular VLSI arrays for the real-time estimation of mo-
ments and cumulants, up to the 4rth-order. In this paper
we extend the methodology proposed in [2] in order to
be able to derive minimum latency SIMD algorithms for

This work is partially supported by a grant from the Na-
tional Science Foundation, MIP-9309319.

0-7803-2431-5/95 $4.00 © 1995 IEEE

HOMs estimation on the widely availabe MasPar-1 paral-
lel machine. The systematic formulation of efficient algo-
rithms is achieved by allowing constraints related to the
architecture of the target machine (MasPar-1) to drive
the various stages of the mapping process. Although
applied to specific class of algorithms here, constraint-
driven synthesis of parallel implementations is a general
enough methodology that can be used in extracting the
parallelism available in a given nested-loop algorithm as
long as the index space and data dependencies are known
at compile-time.

2. THE ESTIMATION ALGORITHM

The “indirect estimation” procedure [1] was reformulated
as a forward-order recursive algorithm in [2], in order to
produce all moment estimates 7 (up to order k) directly
from M samples of the underlying 1-D process. Let,

P 1 &
ik (i1, 825 ey Tk—1) = Y Z Ti* Tigiyeer " Titkiy_, (1)
1=31
where s; = maz(0, —¢1, ~t2,..., —ig—1) and s =
min(M —1,M =1 —i;,M = 1—ig,... M ~ 1 —ix_,).
Taking advantage of symmetry properties [5], the do-
main of support becomes Ro = {(i1,32,...,5k—1) : 0 <
ig—1 Sigpp < ... iy < iy < M —1}. Then, if we de-
fine the k-th order product term pg(iy, ..., ik—1,%), where
(i1,92,.rtk—1) ERgand 0 <i < M — 1 —14y, as
. - 0 - k_l
Pe(inyizyeyik—1,8) =2 [zigi =
=1
= pr~1(i1,%2, - $k—2,8) Titi,_,5 P1 = Ti,po = 1(2)
we notice that terms {p;, ! = 1,2,...k} form the min-
imal set of products needed to compute the k-th order
moments using:
M-—-iy—1
Mt d2,.,0k-1) = i Z Pe—1(11,92, ., Tk—2,9) Titi_,

= 3)

1832

Equation (3) illustrates that every moment term /i can
be computed using lower order product terms {pr—;} in
O(M) steps (we call this order-recursion). The motiva-
tion behind the reformulation of (1) as in (3) was the need
to utilize lower order product terms effectively in comput-
ing subsequent order moments. This property makes the
order-recursive algorithm as fast as possible (complexity
in O(M*)) at the expense of increased memory require-
ments (also in O(M*)).

3. SYNTHESIS OF SIMD ALGORITHMS

In this section we address the problem of deriving sys-
tematically optimal SIMD algorithms for HOM's estima-
tion. Due to lack of space we only sketch the synthesis
methodology used. The target parallel machine chosen
to implement the parallelized version of (3) is the SIMD
MasPar-1 (MP-1). It consists of a square 64 x 64 toroidal
grid (wrap-around mesh) of PEs, where each PE is con-
nected to its eight nearest neighbors (xnet connectivity)
[6]. Each one of the p = 4096 PE's is a 4-bit RISC micro-
processor with 32 registers (each 32-bits wide) and only
64Kb of local memory.

One can model the HOM’s estimation algorithm as a
set of computations occurring at every point of an Index
Space. This space is a multidimensional lattice of integer
points (subset of Z™=), with the dimensionality ng = k+1
corresponding to the number of nested loops in the se-
rial algorithm’s description. The synthesis methodology
starts by first transforming the serial version into a suit-
able Locally Recursive Algorithm (LRA). The LRA may be
represented by an acyclic Dependence Graph (DG) with
dimensionality n, = k+1, k > 3, where each node mod-
els a Multiply-Accumulate (MAC) operation and each arc
a precedence relationship (data dependence) between two
computations. By construction of the LRA all depen-
dence arcs have length independent of the problem size.
Then a linear space-time transformation is applied to the
DG in order to derive a lower dimensional Signal Flow
Graph (SFG) [7] that constitutes a behavioral model of
the data-parallel algorithm's implementation.

The process of formulating a suitable LRA and choos-
ing the appropriate space-time transformation involves
two related challenging tasks: (a) the mapping of a higher
dimensional DG into a 2-D SFG that may be embedded
into the MP-1 interconnection network, (b) the choice of
appropriate contours of propagation for certain data vari-
ables of the serial algorithm that minimizes interprocessor
communications and local memory requirements after the
space-time mapping. As a result of the systematic syn-
thesis the MP-1 implementation uses only fast xnet type
of communications. Furthermore, all MAC operations in
(3) needed to produce an 7 term are allocated to the

same PE thus maximizing the amount of work/PE while
using a constant amount of local memory, not depending
on the sequence length M as longas M < ,/p=64. It
can be proved analytically that the parallel implementa-
tion attains the lower bound on parallel execution time
for the given problem on a mesh with O(1) local memory
per PE.

We applied the aforementioned methodology to de-
rive two data-parallel algorithms for producing all mo-
ment lags, up to the-3rd and 4th-order respectively, since
these are the most commonly demanded in practice. The
resulting array for the 3rd-order moments case is triangu-
far M x M as shown in Fig.1, and was directly embedded
onto the two-dimensional torus of MP-1.

Psendo dependence link
—_—

True dependence link

—_———

Figure 1: 3rd-order moments array structure, M = 4.

Each array node models k computations, (k = 3) and
is allocated onto an MP-1 PE. Arcs represent communi-
cations needed at specific time instants determined by the
minimum latency linear timing schedule selected. Solid-
lined arcs correspond to propagation/broadcasting of.in-
put data from one PE to another (pseudo dependence
links), while dotted-lined self-loops model the reuse of
partial results to produce new ones (irue dependence
links). By selecting an appropriate space transformation
all product terms needed to compute a specific moment
term are produced (in an order-recursive manner accord-
ing to (2)) and accumulated (according to (3)) locally
in the corresponding PE. Therefore there is no communi-
cation overhead associated with true dependencies. Fur-
thermore, the communication overhead due to input data
distribution (pseudo dependencies) is minimized by ex-
ploiting the fast znet network of MP-1. At the end of
the algorithm’s execution 73(i1,17,) resides in PE; ;,,
ma(iy) in PE;, o and 7y in PEg . The timing schedule
determines the arriving sequence of input data. All data

1833

SFG node

Pseudo dependence link
—— x
True dependence link X, 3

_____ -

;3 !

Figure 2: Partitioned algorithm for the 3rd-order mo-
ments estimation, M = 8, K = 4.

entering the array during the first schedule time period
(first recursion) are shown explicitly in Fig.1; in this fig-
ure label 1 <1 < k identifies the order of term p;(i1,12)
that needs the corresponding = token for its generation
at PE;, ;, based on (2). The array for the 4th-order mo-
ments has a similar structure but more links, more com-
putations (work) per PE and more input data entering
the array.

A method of partitioning (virtualization) was intro-
duced so that problem sizes with M > ,/p = 64 could be
processed on the 64 x 64 processors MP-1 machine. Let
us define the Virtual Processor Ratio (VPR) in each
dimension as VPR= % where M is the input sequence
length and K x K the physical PE array employed. The
partitioned parallel algorithm for a VPR=2 may be rep-
resented by Fig.2. The major difference from Fig. 1 is
that every physical PE now models VPR? nodes of the
non-partitioned array. Therefore the work per PE is in-
creased by a factor in O(VPR?) and the communication
requirements per PE by a factor in O(VPR). Since the
major source of overhead relative to the serial algorithm
is due to interprocessor communications a better speedup
is expected as the VPR factor increases.

4. EXPERIMENTAL RESULTS

Simulations were performed in order to determine the
maximum input sequence size that could be processed
on the MasPar-1 having only 64Kb local memory per PE.
The serial algorithm was also coded in C and run on a
Sun Microsystems Sparc20 (Sparc CPU), a an SG! Indigo-
2 (MIPS R4400 CPU) and a Digital 3000 Workstation
(Alpha AXP-800 CPU). All of them had 64Mb of avail-

able RAM memory space. The execution times measured
are reported in Fig.3 for both the 3rd and the 4th-order
moments cases. As we can see the MP-1 outperforms
all workstations except the Digital 3000 on the 4th-order
case and for small M < 16. We should note that the se-
rial algorithm used for comparison is the fastest possible
(order-recursive) at the expense of using extra memory.
The superiority of the parallel implementation is evident
for large records of data that usually lead to better mo-
ment estimates. The SIMD version can in general handle
larger problem sizes than the serial one, since the mem-
ory requirements of the serial version are in O(MF) while
for the data-parallel partitioned version only in O(—A:—Z)
per PE at the expense of introducing communications.
This is so, due to the fact that the non-partitioned al-
gorithms (M < 64) have been synthesized to have only
O(k) memory requirements per PE, where k = 3,4 and
does not depend on M. In order to be able to obtain
results for M > 27 when k = 3 (M > 2% when k = 4)
we had to use dynamic memory allocation for the serial
algorithm.

According to our theoretical scalability analysis, that
was also verified experimentally but only for small M due
to the very small amount of local memory per MP-1 PE,
the SIMD algorithm attain linear speedup i.e. in O(p).
Of more practical interest though is the “speedup” rela-
tively to commonly used workstations that is plotted in
Fig. 4 as a function of the input sequence length. It
should be noted that the serial machines employed for
these simulations use 32-bit and 64-bit microprocessors as
opposed to the MP-1 using very simple 4-bit architecture
PEs. In Fig.4 the 3rd-order moments curve presents an
anomaly as we go from M = 2% to M = 27. The reason
for it lies in the change of the version of the parallel SIMD
algorithm used; M = 28 is the largest input size that can
be used in conjunction with the non-partitioned SIMD
version since the target parallel machineis a toroidal mesh
with 64 x 64 PEs. So when 22 < M < 2% we used the
non-partitioned version, and when 27 < M < 210 the par-
titioned one. Since the latter SIMD algorithm incurs an
additional overhead for managing the data partitioning,
there is a “knee” in that speedup curve at point M = 28,
However, as the data size increases speedup approaches
linearity. There is no such phenomenon observed in the
4th-order moments case, since the serial time is able to
override the increase of the parallel time as we go from
M =28 to M =27 step.

In our simulations we performed 64-bit double preci-
sion operations (for greater accuracy) that are slow on the
MP-1 PEs having only a 4-bit floating point unit per PE,
as opposed to the workstation CPUs that operate directly
on 64-bit operands. Use of single precision floating-point

1834

time in sec

7

Figure 3: Execution times comparison vs. log, M.

32-bit operands would not change the situation radically
but would improve the speedup results in favor of the
MP-1.

5. CONCLUSIONS

Data-parallel algorithms were systematically synthesized
for the estimation of all moment lags up to the 3rd or
the 4th-order and evaluated on the SIMD MP-1 parallel
machine. They exhibit minimum latency since their de-
sign was driven by the machine's operating model and
real characteristics. Performance tests showed not only
improved execution times compared to powerful worksta-
tions, but also the ability to estimate HOM’s of longer
data sequences. We are currently investigating the sys-
tematic derivation of optimal HOS estimation algorithms
suitable for Multiple Instruction Multiple Data (MIMD)
massively parallel machines.

3rd-order moments
T T T

Speedup

4th—order moments
T T T

Figure 4: Speedup results vs. log, M.

6. REFERENCES

[1] C.L. Nikias and J.M. Mendel. Signal Processing with
Higher-Order Spectra. IEEE Signal Processing, 10(3):10—
37, 7/1993.

[2] H.M. Stellakis. “The Systematic Synihesis of Parallel Ar-

chitectures for the Estimaiion of Higher Order Siatistics”.
PhD thesis, Northeastern University, 8/1993.

[3] H.M. Stellakis and E.S. Manolakos. “An Architecture for
the Real-Time Estimation of Cumulants”. In Proceedings
of IEEE Int‘l Conference on Acoustics Speech and Signal
Processing, (ICASSP’93), IV-220-1V.223, 4/1993.

[4] H.M. Stellakis and E.S. Manolakos. “An Array of Processors
for the Real-Time Estimation of the Fourth and lower Order
Moments”. Signal Processing, (special issue on Higher Order
Statistics), 36(3):341-354, 3/1994.

[5] C.L. Nikiasand M. R. Raghuveer. “Bispectrum Estimation:
A Digital Signal Processing Framework”. IEEE Proceedings,
75(7):869-891, 7/1987.

[6] MasPar Computer Corp. "MasPar-1 Archilecture Specifica-
tion”, 1992.

[7] S.Y. Kung. VLSI Array Processors. Prentice Hall, 1989.

1835

