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Abstract

The existing self coherence restoral (SCORE)
beamforming techniques have been shown to be ca-
pable of blindly extracting a desired signal in the
presence of unknown noise and interference by ex-
ploiting the cyclostationarity of the signal of interest.
The versions of SCORE which offer the best conver-
gence properties require computation of the observed
data cyclic correlation matrix. This can be a large
computational burden, particularly if the number of
antennas in the array is large. This paper introduces
a method which requires only a column-wise subset
of the cyclic correlation matrix. It is shown that
in many cases the new method performs as well as
existing SCORE methods yet requires many fewer
computations.

1 Introduction

The problem of cochannel interference is becoming
increasingly important as spectral crowding increases
and as the desire to increase capacity grows. Beam-
forming is an especially effective means for reducing
cochannel interference. Applications where beam-
forming can be employed include signal reconnais-
sance, personal communications systems (PCS), and
cellular communication systems. The class of self
coherence restoral {SCORE) algorithms have been
shown to be capable of extracting a desired signal
without requiring the use of a known training sig-
nal, array calibration data, or knowledge of the spa-
tial characteristics of the background noise and in-
terference [1]. This algorithm seeks a beamformer
weight vector that maximizes some measure of the
cyclic feature strength of the beamformer output. If
the environment does not contain correlated desired
signals, this is essentially equivalent to maximizing
the output SINR. Even in situations where coherent
multipath is present, SCORE can be used to find
an initial weight vector for other algorithms, such as
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CMA, that perform well in multipath but lack the
signal selectivity of SCORE [2].

One drawback of existing SCORE techniques is
the large number of computations required to com-
pute the beamformer weight vector. A significant
portion of these computations are used to form the
observed data cyclic correlation matrix. This matrix
is formed of the cyclic cross correlations between the
data observed at all sensors in the array. As the
number of sensors becomes large, forming the cyclic
correlation matrix becomes computationally expen-
sive. This paper introduces a new method that per-
forms like cross-SCORE yet requires only a column-
wise subset of the cyclic correlation matrix. The
derivation of the new method is accomplished using
the Programmable Canonical Correlation Analyzer
(PCCA) framework [3].

2 Overview of SCORE

There are several different versions of SCORE,
with each version behaving differently depending
on the environment. The simplest version is Least
Squares (LS) SCORE. The weight vector for this ver-
sion of SCORE is typically computed as

Wi = Rg‘ro‘ h (1)
where r® is an M x 1 vector given by
r® = (x(n) zi(n — 7)e” 92" ) 2

x(n) is the M x 1 vector of observed data, a is the cy-
cle frequency being exploited, 7 is the lag parameter,
and (-) denotes a time averaging operation. If only
the desired signal exhibits cyclostationarity at cycle
frequency a, then r® approaches the array response
vector of the desired signal as the collect time ap-
proaches infinity. Thus w;, weight vector converges
to the optimal weight vector. However, in low SIR
environments the convergence is very slow. In such
environments, the cross-SCORE method will outper-
form LS-SCORE. Cross-SCORE can be motivated
from the PCCA framework, as described below.
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The PCCA framework yields a set of weight vec-
tors that maximize the correlation between a linear
combination of the two sets of data x(n) and y(n).
Typically x(n) is the observed data and y(n) is a
training data set obtained through some transforma-
tion of the observed data. The PCCA weight vectors
W, for the observed data are given by the dominant
eigenvectors of the matrix

T, = R Ruy Ry, Ry (3)

The linear combiner weights W, for the training
data set y(n) are given by the dominant eigenvec-
tors of the matrix

T, = Ry Ry R Ry (4)

Note that the combiner weights for the training data
set do not need to be computed. The vectors W, are
used as the beamformer weight vectors. The cross-
SCORE algorithm can be derived using a frequency
shifted (and possibly time delayed) version of the
observed data for the training set. Thus for cross-
SCORE y(n) = x(n — 7)e/?™". Substituting this
into (3) yields the matrix used in the cross-SCORE
eigenequation

RLRALR;L (R2)Y (5)
where

RZ, = (x(n)x¥(n — r)e72mm) (6)

is a finite-time estimate of the cyclic correlation ma-
trix of x(n) for cycle frequency a and lag 7. Note
that the vector r*® used in LS-SCORE is the ith col-
umn of R$,. A key point is that cross-SCORE re-
quires computation of the complete M x M observed
data cyclic correlation matrix, while LS-SCORE re-
quires only one column of this matrix.

The PCCA framework can also be used, for exam-
ple, to develop SCORE methods which exploit mul-
tiple cycle frequencies. In this case the training set
y(n) has a larger dimension than the observed data
set. The training set can be obtained by a number of
other transformations, such as filtering, as well. This
makes the PCCA useful as a general framework for
developing blind adaptive algorithms.

It should be noted that neither cross-SCORE nor
LS-SCORE is capable of separating multiple signals
having the same cyclic feature. The phase-SCORE
algorithm is capable of separating multiple signals
exhibiting the same cyclic feature if those cyclic fea-
tures have different phase. This would be the case,
for example, with multiple bauded signals having the
same baud rate but different baud timing. Unfor-
tunately, phase-SCORE can not be motivated from

the PCCA framework. The remainder of this discus-
sion will assume that the desired signal is the only
incident signal that exhbits the cyclic feature being
exploited.

Results will be presented later for what will be

- referred to here as principal components versions of

SCORE [4]. These versions are obtained by replac-
ing the inverse correlation matrix of (1) and (5) with
the pseudo-inverse. In a beamforming context, this
is equivalent to constraining the weight vector to lie
in the signal subspace. This modification can dra-
matically improve convergence in some cases.

3 Description of New Method

It is proposed here that a subset of L < M sensors
be used to form the training signal. This reduces the
dimension of R,y from M x M to M x L. As an
example, assume that sensors #1 and #2 are used
to form the training signal. Examination of the gen-
eral PCCA expression shows that for this particular
choice of training signal, Ry is equal to the first two
columns of R, , and R, is a 2x 2 sub-matrix of R .
The technique can be described using a notation sim-
ilar to MATLAB™ by the following. Denote by k
the vector of sensor indices to be used. For the ex-
ample above, k = [1 2]. Then a matrix consisting of
the first two columns of Ry, is denoted by RZ, (:, k).
Using this notation, the dominant eigenvector of the
following M x M matrix can be used in a manner
analogous to cross-SCORE:

RARZ (LK) {Rux(k, k) H{REG K. (7)

Algorithms with the above form will be referred to
here as subset-SCORE algorithms, because they use
a subset of the cyclic correlation matrix. Note that
cross-SCORE requires the inversion of Ry, (either
explicitly or implicitly through the use of, e.g., QR
decomposition and back substitution). The method
described above requires inverting R (k, k) as well.
However, if k is small, this second required inver-

‘sion may have a deterministic form (as for a 2 x 2
matrix) or may require a relatively small number of

computations.

Obviously this approach reduces the number of
computations required. The question that must be
answered is how does this affect overall performance.
In an environment with strong interferers, the train-
ing signal weight vector W, rejects the interferers
and extracts the portion of the training signal that
is most strongly correlated with the cutput of W. If
W, cannot reject the interference, performance will
be degraded. In cross-SCORE, this is not an issue
because W, has the same aperture and same de-
grees of freedom as W;. When a subarray is used to
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Figure 1: Comparison of several different versions
of SCORE as a function of input SIR. Results

shown for Principal Components Cross SCORE,

Cross SCORE, Principal Components Least Squares
SCORE, and Least Squares SCORE. The dotted line
indicates the optimal output SINR.

form the training signal, W, does not have the same
aperture and degrees of freedom. Thus it would be
expected that if the ‘training array’ cannot remove a
strong interferer, the performance will be degraded.
In such a case, the algorithm will not fail completely
but will have performance similar to LS-SCORE. It
can be seen that selection of the sensors to use in
generating the training signal can have an impact on
performance. It might be argued that simply reduc-
ing the number of sensors M used in the beamformer
would have the same effect, i.e., reduce the number of
computations and yield similar performance. How-
ever, reducing the number of sensors in the array can
greatly limit the ability of the beamformer to sepa-
rate signals.

4 Simulation Results

A general comparison of the SCORE methods de-
scribed above will now be conducted through com-
puter simulations. In all simulations an 8 element
circular array configuration is used, with the diame-
ter equal to one wavelength of the carrier frequency
of the incident signals. The narrowband array model
is used for the incident signals. A single 20 dB QPSK
desired signal is incident from 0°. The baud rate
is 0.25 relative to the sample rate of unity. The
QPSK signal is generated using a 100% excess band-
width Nyquist pulse shape. The cyclic correlation of
the desired signal at the baud rate is exploited with
the lag parameter 7 set to zero. A varying num-

ber of gaussian interferers will also be incident on
the array. Where results are presented for principal-
components versions of SCORE, the number of inci-
dent signals is assumed to be known. The effect of
varying the input SIR will be examined first.

It has been stated that the main advantage of
cross-SCORE over LS-SCORE is the former’s faster
convergence, particularly in low SIR environments.
This is clearly illustrated in Figure 1. This figure
shows the mean output SINR (based on 100 inde-
pendent trials) of several versions of SCORE as a
function of input SIR. A single gaussian interferer is
incident from 30°. The integration time is fixed at
1024 baud. Note that the performance of the PCCA-
type methods (cross-SCORE and the principal com-
ponents version of cross-SCORE) is essentially inde-
pendent of input SIR. This is because the weight vec-
tor used to form the training signal is able to steer a
null on the interferer. In contrast, LS-SCORE must
completely rely on the frequency shift operation to
decorrelate the interferer.

The performance of subset-SCORE and existing
SCORE methods will now be compared. The envi-
ronment is identical to that considered above with
the power of the gaussian interferer set to 50 dB.
This corresponds to the lowest input SIR consid-
ered earlier. Since the environment contains only
one interferer, using two sensors in the training array
should be sufficient. Figure 2 shows a comparison of
cross-SCORE and subset-SCORE when two columns
of the cyclic correlation matrix are computed. The
subset-SCORE method uses two adjacent sensors to
form the training signal. As can be seen, the perfor-
mance is nearly identical. Thus there is no advantage
to be gained from computing the entire cyclic corre-
lation matrix. In this two signal environment, the
two sensor subarray used to form the training signal
could also be used to generate the actual beamformer
output. However, if this were done the optimal out-
put SINR would be only 14.4 dB, compared to the
28.1 dB optimal output SINR that can be achieved
using the entire array. Figure 2 demonstrates that a
two-sensor training signal can be used in principal-
components versions of SCORE as well. Again the
performance is nearly identical.

To further illustrate the behavior of the subset-
SCORE approach, a more severe environment will
be considered. This environment has four gaussian
interferers in addition to the QPSK desired signal.
The interferers are incident from 30°, —100°,—160°,
and 120°, with SWNR of 50 dB, 50 dB, 20 dB, and
20 dB respectively. Note that two of the interferers
are 30 dB stronger than the desired signal, while the
other two are equally as strong as the desired signal.
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Figure 2: Comparison of: cross-SCORE, principal-
components SCORE, and versions of these algo-
rithms which use only two columns of the cyclic cor-
relation matrix. The dotted line indicates the opti-
mal output SINR.

Results are shown in Figure 3. This plot is para-
metric in the number of sensors used in the training
array, i.e., the number of columns of the cyclic cor-
relation matrix that are computed. When 2 columns
are used, the training array has only one degree of
freedom, and the strong interferers can not be re-
moved from the training signal. Thus the perfor-
mance is very poor. When 3 columns are used, there
are sufficient degrees of freedom to remove the strong
interferers, but not the two weaker interferers. Thus
the performance improves, but is still not as good as
cross-SCORE. Interestingly, adding one more degree
of freedom gives performance almost identical to that
of cross-SCORE. Note that in this case, the train-
ing subarray is actually overloaded (four sensors, five
signals). The general conclusion drawn from these
simulation results is that the subset approach using
only two columns will perform about as well as cross-
SCORE except in very severe environments.

5 Conclusions

A new version of SCORE has been described that
performs well in low SIR environments, like cross-
SCORE, yet does not require computation of the
complete observed data cyclic correlation matrix.
This new version of SCORE is referred to as subset-
SCORE, because it requires only a column-wise sub-
set of the cyclic correlation matrix. In many cases as
few as two columns is sufficient. Subset-SCORE is
derived from the PCCA framework by reducing the
number of sensors used to obtain the SCORE train-
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Figure 3: Comparison of cross-SCORE (dashed line)
and subset-SCORE (solid lines) when four interferers
are present. Parametric in the number of sensors
used in the training array.

ing signal set. In general, this procedure can used
in any beamforming method that can be motivated
from the PCCA framework. One drawback of this
approach is that its usefullness is limited to environ-
ments where a single desired signal exhibits cyclosta-
tionarity at the cycle frequency being exploited.
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