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ABSTRACT

A simple approximate maximum likelihood (AML) esti-
mator is derived for estimating a power of a single
signal with rank-one spatial covariance matrix known
a priori except for a scaling. The noises are assumed
to have different and unknown powers in each array
sensor.

The variance of the introduced AML estimator is
compared with the exact Cramer-Rao bound (CRB) of
this estimation problem analytically and by computer
simulations. It is shown analytically that the AML
estimator achieves CRB in the majority of practically
important cases.

Computer simulations have been performed sho-
wing that the estimation errors of the AML estimator
are very close to CRB for a wide SNR range.

1. INTRODUCTION

ML estimation of signal parameters from sensor array
noisy data has received considerable attention [1}, [2].
Usually, the total ML solutions are computationally
expensive. Generally, when a priori information about
the covariance matrix structure or about covariance
components is taken into account, the ML estimator
performance is greatly improved as well as yielding
simpler implementations of the ML estimation.

In [3], [4] the problem of signal and noise power
estimation has been considered for different cases of
structured covariance. In (3] the simple ML estimator
of signal and noise powers has been derived for the spe-
cial case when the signal and noise covariance matrices
have low rank and are known a priori except for a sca-
ling. In [4] the same problem has been considered for
the case of full rank noise covariance matrix and ar-
bitrary rank signal covariance matrix.

In many practical situations in radar and sonar sen-
sor noise powers may be different and unknown. In
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this paper we consider the problem similar to [3], [4]
assuming that the powers of noise are arbitrary and
unknown in each array sensor and that the noise is
spatially uncorrelated. The spatial covariance matrix
of received signal from single source is assumed to be
a rank-one matrix and to be known a priori except for
a scaling, i.e., except for a signal power. However, the
results can be extended to the case of well separated
multiple sources. We derive the simple approximate
ML estimator (called below as AML) of signal power
in the presence of unknown sensor noises assuming that
the signal-to-noise ratio (SNR) is low and that the num-
ber of data snapshots is large. The variance of the AML
estimator is compared analytically with the exact expli-
cit CRB of this problem. Such a comparison allows us
to prove that the derived estimator approaches asym-
ptotic efficiency in several practically important cases.

Computer simulations show that the root-mean-squ-
are estimation errors of our estimator are very close to

the CRB for a wide SNR range.

2. AML ESTIMATOR

Assume that single signal impinges on the array of n
sensors. Hence, a nx 1 complex vector of array outputs
can be expressed as [1], [2]:
z(i) = as(i) + n(i), i=12,...,N (1)
where a is the n x 1 signal wavefront vector (so-called
steering vector), s(z) is the random signal waveform, N
is the total number of data snapshots. The spatial co-
variance matrix of the received signals (1) is defined as
M = E [z(i)z"(i)], where H denotes the Hermitian
transpose and E[-] denotes the expectation.
Let us now make the following assumptions concer-
ning the data vector model:
1). The data vector (i) is the stationary, Gaussian
complex random vector with the following properties:

E[z())] =0, E[z(i)z¥ (k)] =6uM

where 8;; denotes Kronecker delta.
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2). The steering vector a is known a priori.

3). The elements of the noise vector n(7) are sta-
tistically independent of each other and also statisti-
cally independent of s(i).

4). The signal waveforms, s(i) are stationary, sta-
tistically independent, and zero-mean complex Gaus-
sian random quantities with unknown power pgs.

5). The noise powers ai, k=1,2,...,nare unknown.

Thus, the spatial covariance matrix has the form
M = My + psaa”

where ps is a signal power, My is a diagonal noise
covariance matrix

: 2 2 2
MN = dlag{glya2) --‘)an}

In other words, according to these assumptions, the
covariance matrix can be represented as a sum of two
matrices. The first one (the noise covariance matrix) is
known a priori to be a diagonal matrix but its diagonal
elements (i.e., noise powers) are arbitrary and unknown.
The second one is known @ priori except for a scaling
(i-e., except for a signal power ps) rank-one signal co-
variance matrix. The problem is to derive the ML esti-
mate pg of signal power pg.

Using a priori knowledge of steering vector a, let
us transform the array data (1) as follows:

y(i) = Pz(i), i=1,2,...,N
where P is the n x n diagonal matrix
P = diag{a7',a3",...,a7"}

We will use below the new data y(i), i = 1,2,...,N
instead of the =(3i), 1 =1,2,...,N.

The covariance matrix of the transformed data can
be expressed as

R = E [y(i)y" (i)] = PMPY = Ry + psee” (2)
where the n x n diagonal matrix

Ry = diag{p1,p2,.--,Pn}

T denotes transpose. Here pr = 02 /|ax|?, k= 1,2,...,n
are unknown noise powers of the transformed data,
e = (1,1,...,1)T. Hence, the problem of estimation
of the parameter ps from the vector array data (1) can
be reformulated as the same problem for the new vector
data y(i) with the covariance matrix (2).

The log-likelihood function can be expressed as:

L =—logdet R — Tr(R'R) (3)

where Tr denotes the trace of matrix and R is the nxn
sample covariance matrix

. 1 &
R= 52 y@y" () )

The ML equations can be written as

0L oL
— =0, — =0, k=12,...,n 5
dps Opk ®)
for ps = Ps, Pr = Px, where ps and px are the ML esti-
mates of signal power and of kth noise power, respecti-
vely.

After straightforward calculations we find that the
ML equations (5) can be expressed as

i n 1 n 1_ n n _fim_l
(143532 2) P23 3 f

=1 m=1

(Reus — 51+ s ) (H%Zi)
el 4
ﬁszn:(_fz’k;;-fzkz), E=1,2,...,n

=1

where Ry is the (k,)th element of sample covariance
matrix (4).

Assume now that the SNR is low while the num-
ber of snapshots is large, i.e., ps € px, k=1,2,...,n,
N > 1. After some straightforward algebra using these
assumptions and the ML equations, we get the follo-
wing simple AML estimator of signal power (see [5] for
details):

n
ps= Y,

R n

R kf’} / 2 3 IR (6)
rim BexRu/ 2, Rerflu
k#l kgl

The estimator (6) is expressed in a form conductive
to simple implementation. This formulation is devoid
of matrix inversion or eigendecomposition. It should
be also noted that (6) can be considered as a variant of
matched processing for arbitrary and unknown sensor
noise powers case. Therefore, it can be extended to the
case of well separated multiple signals with unknown
directions of arrival. In this case one should estimate
the function ps(f) within angular area of interest (if
the signals are assumed to be plane waves). The ste-
ering towards the chosen set of angles can be done using
matrix P.

3. CRAMER-RAO BOUND

It is well known that for any unbiased estimate of vector
parameter @ = (6,,83,...,08m)T (m is the total num-
ber of unknowns), the CRB is given by the diagonal
elements of inverted Fisher information matrix J -1
CRB(6;) = [J'l],-;. In turn, the (i, k)th element of
Fisher information matrix for multivariate Gaussian
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complex vector data with zero mean can be expressed
by well known Bangs’ formula

oR OR
o -1 -1
./,k_N’I‘r(R 88R 30k)

It can be shown using this equation that (see [6] for
details):

1 D(D + p%G)
N (D -1)*/p% +(D - 2)G’

1
D=1+PS )
;Pk

CRB(ps) =

n

1
6= 57— (1
£ pi D — 2pspr @)

4. STATISTICAL PERFORMANCE

It can be shown that (6) is the asymptotically unbiased
estimator, i.e.,

E[ﬁs]=Ps+o(%>

The asymptotic variance of the estimator (6) can
be expressed as

n

1
2
k

k=1 Pk + ps
#l
2

1\.
k; (P& +P5)(P: + ps) ] to (1-‘7-)

k£l
Comparison of the asymptotic variance of the esti-
mator (6) with the exact CRB (7) in practically impor-
tant cases gives the following results.
4.1. Low SNR Case

In this case we have

o1

-5 e S

Z PrPl
it (px + ps)* (o + ps)?

-1

i

1 201
lim CRB(ps) = —
ps—0 (bs) N 1;121 y 2341
k2l

1
li p —
Jim, var(ps) + o (N)
Therefore, the AML estimator (6) approaches asym-
ptotic efficiency as the SNR approaches zero.

4.2. High SNR Case

For high SNR, comparison of CRB and asymptotic va-
riance yields

Jim CRB(ps) = 1 P} =

. N 1
p;l-f»noo var(ps) +o (N)

It implies that although the derivation of AML estima-
tor (6) was carried out under the low SNR assumption,
it also approaches asymptotic efficiency for high SNR.

4.3. Two Sensor Case

For n = 2 the AML estimator (6) becomes the ML
one for any SNR value and any number of samples N:
ps = (Ri2 + R21)/2. Its variance and the CRB also
coincide exactly.

4.4. Identical Noise Powers Case

Assume that the noise has identical powers in each sen-
sor, i.e., p1 = pa = +-- = pp. Designating px = pn,
k=1,2,...,n, we have

. _ 1 ([, 2pspNn v\ _
CRB(ps)—N<p5+ n +n(n-—1) -

var(ps) +0 (3

The last equation implies that (6) is asymptotically
efficient estimator in the case of identical noise powers
and arbitrary SNR.

4.5. Case of Several Distinguished Sensors

Assume now that the noise powers in arbitrary K sen-
sors (K < n — 1) with the numbers Iy, ...,lx from the
total number of array sensors are much higher than
that in the other n — K sensors, i.e., p;, > pi, m =

2,..,K,k#1,la,...,lx. Assume also that the no-
ise powers in the other n — K sensors are identical, i.e.,
pr =pn, k #11,12,...,lx. It can be shown that

lim CRB(ps) =

Ply s Plge =+

1/ PSPN PN _
N (p5+2(n—K)+(n—K)(n—K—l)) =

. . 1
lim - var(ps) + o (—1\7)

Plysye-sPlge—

As a result, the distinguished sensors with powerful
noises have no influence on the CRB and on the va-
riance of the AML estimator (6). Indeed, the results of
the noisy sensors are included with the low weights in
the AML estimator (6). The estimator (6) retains the
asymptotic efficiency in the case considered.
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Figure 1: Normalized experimental RMSE and normalized
CRB versus SNR for the first noise scenario.

5. SIMULATION RESULTS

We examine the performance of the derived AML esti-
mator (6) by comparison the root-mean-square error
(RMSE) of signal power estimation and the CRB.

We assumed the uniform linear array of ten sensors
and assumed also that the noise was uncorrelated from
sensor to sensor and uncorrelated with the signal too.
A single signal was assumed to impinge on the array
from the normal direction. The number of samples ta-
ken was 100 and a total of 100 independent simulation
runs have been performed to compute the RMSE for
each SNR value. The SNR was defined as

SNR = (ps/n) Y _(1/ps)
k=1

In the first example, we assumed the following sen-
sor noise scenario: p; = 1.00, p» = 4.57, ps = 3.13,
ps = 7.89, ps = 18.01, ps = 0.57, p7 = 1.54, pg = 5.13,
py = 2.77, and pyo = 12.39.

In the second example, we assumed the scenario:
p1 = 0.67, p; = 1.23, p3 = 0.86, ps = 1.54, ps = 1.61,
pe = 1.04, p7 = 0.92, ps = 0.58, ps = 0.89, and pjo =
1.11.

Figures 1 and 2 show the resulting normalized expe-
rimental RMSE of estimator (6) and normalized CRB
versus SNR for the first and second example, respe-

ctively. The normalized RMSE and CRB are here
defined as:
normalized RMSE = RMSE
ps
normalized CRB = SRB
S

The results of simulations verify that the RMSE of the
AML estimator is very close to CRB for a wide SNR
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Figure 2: Normalized experimental RMSE and normalized
CRB versus SNR for the second noise scenario.

range and, in fact, has the same asymptotic perfor-
mance, as the exact (optimal) ML estimator.
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