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ABSTRACT

This paper is concerned with the classification of radar returns
including sea, ground and composite clutters. We first present
an analysis of radar clutter recorded data allowing to validate
the K amplitude distribution and the autoregressive modelling
of the spectrum.

Then, we briefly describe a classifier based on a multi-layer
neural network. The inputs of which are the shape parameter of
the K-distribution, the magnitude and the phase of the poles
and the reflection coefficients calculated by means of the
Burg's or multi-segment algorithm. Experimental results are
presented to illustrate the performance of the proposed
classifier

1 INTRODUCTION

Separation of moving targets and clutter signals due to sea and
ground and also due to birds, storm clouds or other
atmospheric dirsturbances, is an important step in radar signal
processing. This separation allows us not only to
considerably improve radar detection performances, but also
to identify clutter in order to make decisions for the control of
air traffic or for the control of the radar itself. It is therefore
important to classify radar clutter signals, which is the subject
of this paper.

Clutter models have to fulfil certain constraints in both
amplitude distribution and correlation properties, i.e. spectral
characteristics. As a consequence of the central limit theorem,
the sea clutter amplitude distribution is often assumed to be the
Rayleigh distribution. However, for low grazing angles and/or
high-resolution radars, the empirical distributions calculated
from experimental data exhibit significant deviations from
Rayleigh statistics. This is why the K-distribution has
received the most attention. Moreover, the K-distribution has
been validated by experimental data [1, 2, 3], and unlike the
Weibull distribution, has physical interpretations [4]. The
compound form of the K-distribution allows us to identify two
components of clutter fluctuations. The first, corresponding to
an instantaneous component, accounts for the reflection from
a very large number of independent, identically distributed
elementary scatterers; it varies rapidly and exhibits a
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decorrelation time of a few milliseconds, depending on the -
internal motion of the scatterers within each resolution cell as
well as on the radar wavelength. The second component,
corresponding to a mean component, is a spatially vary$ing
mean level resulting from a bunching of scatterers associated
with the sea swell structure. This component varies slowly
with a long correlation time of several seconds, and is
unaffected by frequency agility. The properties of this
component are studied in [5]. Based on both experimental
analysis and theorical reasoning, it is shown in [6] that
ground clutter also obeys the K-distribution.

Concerning the correlation properties of the clutter, its power
spectrum can be modeled by using high resolution spectral
methods, which give the clutter model as a combination of
spectral lines for sea clutter [7] or by means of a low order
autoregressive model for both sea and ground clutter [8, 9, 10].

For classification purposes, it is shown in [8] that spectral
characteristics in terms of reflection coefficients,
autoregressive parameters and cepstral coefficients, could be
used as discriminant features for classifying radar ground
clutter by means of a traditional Bayes classifier. In [11],
classification of several types of radar returns including birds,
weather and aircraft was carried out using both reflection
coefficients obtained from a second-order spectral analysis,
higher order statistics (skewness and kurtosis which measure
the degree of deviation of the incoming radar data from
Gaussianity), and signal-strength-related features.

In this paper, we present firstly an analysis of recorded radar
clutter data allowing us to validate the K amplitude distribution
and the autoregressive modelling of the spectrum. In the
second part, we propose a neural network based classifier to
distinguish between sea, ground and composite clutters. Some
experimental results are described to illustrate the behavior of
this classifier.

2 FEATURE SELECTION
2.1 Experimental data

Clutter data were recorded from an S-band radar functioning in
operation mode on the Mediterranean seashore. This radar is a
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two dimension (azimuth and range) surveillance radar. It is
able to operate with the agility of the emission frequency and
wobbulation of the pulse repetition frequency, so the data
coherence time is short and corresponds to a duration of one
single burst of less than ten pulses.

The observations of sea clutter were recorded for several
directions of propagation of the swell and for different
meteorological conditions, from a calm sea (sea state 2) to a
rough sea (sea state 4). Land clutter have been recorded both on
flat and on cliff seashores.

Four classes of echos were distingished in these data: land
clutter, calm sea clutter, rough sea clutter and a composite
clutter class in which most of the energy comes from
atmospheric clutter or thermal noise.

2.2 Amplitude distribution characteristics

First, we tested the goodness-of-fit of the Weibull, Rayleigh
and K distributions on real data. The results showed the good
fit of the K-distribution whatever the experimental conditions.
The K-distribution is depicted by (1).

_ 2b (bxY
P(x)——r(v)(z) K, (bx) x=0 1)

The two parameters of the K-distributions, b and v, are
correlated. Indeed, the ratio 4V/ b* is related to the energy and
thus dependent on range. The shape parameter v takes alone,
represents the texture of the clutter. Homogeneous clutters lead
to high values for v, while strong returns such as land clutter
are represented with small values. Fig. 1 shows K-
distributions for four different types of clutter: calm sea, rough
sea, land and composite clutter.
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Fig. 1 : K-distributions for 4 different types of clutter.

The values of the shape parameters v are given in Tab. 1 for
four different types of clutter . This shape parameter proves to
be useful as a feature for clutter classification.

Land Rough sea Calm sea Composite
clutter clutter clutter clutter
0.7 2.4 5.1 29

Tab. 1: K-distribution shape parameter for four different
types of clutter.

2.3 Spectral characteristics

The results of spectral analysis performed on short time data
(duration of one single burst), show that autoregressive
modelling is well adapted to represent the sea clutter spectrum.
A second order model was sufficient to obtain a good
representation. Our statistical analysis of the first AR pole
shows that the magnitude and phase have different values
according to the type of clutter. Fig. 2 and 3 respectively, plot
the first AR pole computed with the Burg's algorithm for land
and rough sea clutters.

Fig. 2 : Rough sea .

Fig. 3 : Land.

A better discrimination can be obtained with the multi-
segment algorithm [11] for computing the reflection
coefficients, which gives results averaged in space (range
gates and burst) and time (antenna scans). The M order
reflection coefficients are then calculated by means of (2).
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where M represents the AR filter order, S the number of scans,
G the number of gates, B the number of bursts and Np the
number of sampies in the burst b. Fig. 4 and 5 plot the first AR
poles obtained with the multi-segment algorithm, in
processing the same data as for Fig. 2 and 3.

Fig. 4 : Rough sea . Fig. 5 : Land.
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3 NEURAL NETWORK BASED CLASSIFIER

For radar clutter classification, we used a multi-layer neural
network with one or two hidden layers. The learning algorithm
is the back-propagation method. The output layer is composed
of four neurons corresponding to the four classes of radar
clutter described in § 2.1.

Theirs inputs are both amplitude charactenstics with the shape
parameter of the K-distribution and spectral characteristics
with the reflection coefficients or the poles calculated with the
Burg's algorithm or its multi-segment version. The input layer
is then composed of five neurons.

4 EXPERIMENTAL RESULTS

The performances are measured in terms of classification rate
for each class, and Average Classification Rate (ACR) in
percent. Two different data sets composed of 9520 samples (a
sample is the features calculated on the corresponding burst)
for each class, were used as training examples and testing data
for generalization.

We first determinated the best discriminant features among the
spectral parameters (magnitude and phase of the poles or the
relflection coefficients associated with a first or second order
AR model) estimated in using the Burg's algorithm. Then, the
influence of the neural network architecture (number of hidden
layers and number of neurons in each hidden layer) was studied.
Finally, performance improvements have been obtained by
considering the multi-segment algorithm for computing the
poles, and by incorporating the K-distribution shape
parameter as a supplementary discriminant feature.

4.1 Determination of the best spectral parameters
as discriminant features

The comparison of the classifier performances was carried out
in terms of the ACR, with a 1-9-4 architecture, i.E. one neuron
on the first layer (input corresponding to the spectral
parameter), nine neurons on the hidden layer and four neurons
on the output layer. The best performance (ACR of 44.04%)
was obtained with the magnitude of the fisrt reflection
coefficient. We can note that this feature is related to the
spectral width of the process.

When using two discriminant features, the best ACR (47.38%)
was obtained with the phase of the poles of a second order AR
model. If the magnitude and the phase are used, i.e. with a 4-9-
4 architecture, the best classification results (ACR of 57.48%)
are also obtaines with the poles.

From this experimental study, it was decided to consider the
magnitude and the phase of the poles of a second order AR
model as discriminant features.

4.2 Determination of the network architecture,
and comparison of estimation algorithms

Fig. 6 and Fig. 7 show the ACR for different network
architectures, depending on the number (one or two) of hidden
layers and the number of neurons (two to thirteen) in each
hidden layer when the poles are calculated by means of the
Burg's or the multi-segment (with S$=3, G=5 and B=35)
algorithms respectively.

Burg’s algorithm
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Fig. 6 : ACR according to the number of neurons.

Multi-segment algorithm
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Fig. 7 : ACR according to the number of neurons.

The best classification results are obtained with a 4-11-11-4
architecture, i.e. two hidden layers with eleven neurons in each
hidden layer. However, almost the same performances are
obtained with nine neurons in the hidden layers, so that a 4-9-
9-4 architecture provides a good compromise between
classification performances and computation time.

Finally, in comparing Fig. 6 and 7, we conclude that the use of
the multi-segment algorithm to estimate the poles improves
significantly the classifier performances.

Indeed, the averaging in space, on both the range and azimuth,
allows us to take into account the spatial correlation that is
different according to the type of clutter, while the averaging
in time (antenna scans) allows us to take into account the time
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correlation which is important for land clutter (due to
immobile reflectors, radar returns are highly correlated from
scan to scan). A good compromise between computation time
and classification performance was obtained with §=3, G=5
and B=S5.

4.3 Classification results

The classification results obtained with a 4-9-9-4 network and
with the poles calculated with the multi-segment algorithm
(5=3, G=5 and B=5) are summarized in Tab. 2.

The results in generalization (ACR of 89.3%), close to the
results obtained during the training step (88.6% and 88.2% for
the training data 1 and 2 respectively) prove the good
behavior of the classifier. We notice from the results, that land
and composite clutters are recognized more accurately than sea
clutter. The separation between a calm and a rough sea is a
difficult task, due to the same nature of the two classes.

4.4 Use of the K-distribution shape parameter

In this section we introduce the shape paramerter of the K-
distribution as a discriminant feature. When this shape

parameter is used alone, the ACR is about 71.7%. By
considering both the poles and the shape parameter as inputs
of the neural network (i.e. with a 5-9-9-4 architecture), we get
an ACR of 96.5% during the training step. But, in the
generalization step the ACR decreases to 70%. This is due to
the non stationarity of the shape parameter estimation
between the training and testing steps.

5 CONCLUSION

In this paper, we have proposed a multi:layer neural network
based classifier for distinguishing several recorded radar
returns in a real operational mode: land, sea and composite
clutters. By using spectral parameters as the inputs of the
neural network, an ACR of 89.3% was obtained during the
generalization step. Such a solution could be used for radar
clutter segmentation during an operational mode.

We have shown that the classifier performances can be
improved in taking the K-distribution shape parameter into
account. However, due to the non stationarity of the shape
parameter estimation, its incorporation as an input of the
neural network needs further studies effective concerning the
generalization step.

Classification results

Data Land (%) Calm sea (%) Rough sea (%) Composite (%) ACR (%)
Training data 1 99.4 69.4 85.6 100 88.6
Training data 2 98.6 71.7 82.7 99.9 88.2

Testing data 98.6 76.4 82.2 100 89.3

Tab 2. : Summary of classification results on testing and training data.
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