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Abstract

This paper addresses the problem of the exact recovery of
unquantized moments from their quantized counterparts. A
brief review of amplitude quantization and its impact on the
Exact Moment Recovery (EMR) problem is given. In
particular, a special class of order p, called L,, for which
EMR is always achieved regardless of the quantization
fineness used, is introduced together with some new results
on its properties. Due to the tremendous practical gains
that can accrue from the use of 1-bit quantized members of
Ly, it is shown how to force any signal to become a member
of this class, hence naturally re-discovering the dithered
quantization process. Two approaches to the EMR problem
and some simulation results which are in very good
agreement with the theory, are presented.

1 Introduction

Analog-to-Digital (A/D) conversion of a signal consists of
two processes: sampling and amplitude quantization. The
first process is known to involve no loss of information as
long as the band-limited signal is sampled according to
Shanncn’s sampling theorem. However, because of the
approximating nature of quantization, the second process
involves a signal degradation whose severity depends on
the quantization fineness used [1}, [2]. For the clarity of
the exposition, the impact of this quantization-induced
signal degradation will be discussed in the context of the 1-
D EMR problem only. A new general class of signals of
order p and called L, will be introduced and new results on
some of its properties stated. Each member of L,, exhibits
the attractive property of linearizing, in the mean sense, the
quantizer’s Input//Output (IO) characteristics. of
paramount importance is the fact that for members of L,,
the EMR problem is solved regardless of the quantization
fineness used. It then follows that if the most practically-
attractive choice of 1-bit quantization scheme is made, then
several 1-bit DSP systems (correlators, Fourier Analyzers
and Power-Spectral Analyzers) can be designed with
attractive attributes such as structural simplicity, low cost,
high input bandwidth and real-time processing capability.-

2 Classical Quantization and Moments Recovery

We shall introduce here a general uniform quantizer Q
characterized by a shift factor a £[-%4, %) and a uniform
quantization step q. This quantizer, with input X and
output Xp, is defined by the following nonlinear operator
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Q
X - Xo=QX)=(atn+¥)q if(a+n)q<X<(a+n+1)qneZ (1)

Fora=0 and a = -}, the well-known mid-stepper and mid-
treader quantizers are obtained respectively. Note here that
elements from the 2 sequences {t.}={(a + n)q} and
{yn=(atn+¥:)q} are called the transition points and the
representation levels of the quantizer Q, respectively. If the
p-th order unquantized and quantized moments, denoted by
Hp and poyp respectively, are defined by:

Hp = E [X7] @)
pe=E[X]] €))
then using the Characteristic Function approach, it was

shown in [1] and {3] that the quantized-unquantized
moments relationship is given by:

Hop = Ap+ Bp 4)

and A; and B, are here called the principal term and the
bias term and defined respectively by:
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where C?*! = p ,i=+=1 and @ stands for
r

modulo-2 addition.
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An 1nteresting property of the general uniform classical
quantizer is now stated in the following new lemma whose
proof can either be directly found in [4] or easily derived
from [5].

Lemma: For a given p-th order quantized moment uq, a
general uniform classical quantizer Q, of step q and shift
factor a e[-4,'4), is equivalent to a transformation Tp(x)
that:

1. Depends only on the first-order distribution
function P(x) = U(x) of the transition points
{ta} and

2. Satisfies

Hop = E[Ty(x)] Vp21 ™

where

Ty = D [@rn+4)ql (Pi(a+nt1)g - x]
-Pi[(a+n)q-x]} ®)
and U (x) is the familiar unit step function.

This lemma clearly brings out the key role played by the
distribution function P(x) of the tramsition points in
controlling the shape of Tp(x) which represents the classical
quantizer’s p-th order moment-sense Input/Output
characteristics.

3 Exact Moments Recovery and L,

As mentioned earlier, the solution of the EMR problem is
achieved for members of L,. We will therefore first
introduce the class L, and state two new theorems on its
properties which are the key to the solution of the EMR
problem and whose proofs can be found in [4] or [5].

3.1 Definition of L,
An ergodic and stationary signal X is called a member of

the p-th order class L, if its Characteristic Function (CF),
Wx(u), verifies the following:

| 2nr
T =0Vvr [0p-1]andn=0 (9)

It is very clear from this definition that all members of L,

share the inherent and attractive property of automatically

cancelling the unwanted bias B, given in (6).

3.2 Twao key properties of L,

Theorem 1

In a general uniform classical quantization, a signal is a

member of L, if and only if its corresponding
transformation T,(x) is a polynomial of degree p

Theorem 2: If 7,(v) is a polynomial of degree p, i.e:

)4
T,(0) = chxi (10)
A=0

then:

The coefficients ¢, are independent of the shift factor a
and are given by:

! P4
Cz-r;’m(%) [p@l@l] (a1

Corollary to Theorem 2:

The coefficients ci have the following characteristics:

(a) When p and 4 have the same parity, ¢; >0
VXel, and VAie[0.p]

(6) When p and 4 have different parities and X is
such that g = 0 for all odd t<p, thencz = 0
VA e [Op]

Combining equations (7), (10) and (11) yields the following
Input/Output equations which are listed below forp =1, 2,
3, and 4 only.

Hi = Kol (12)

H2 = pgz '{‘%J (13)

U3 = pos +(—iy]) (14)
) 4

Ha=HQs ¥ (—%z‘#z ‘%) (15

The bracketed terms on the RHS of the last 4 equations are
the well-known Sheppard’s corrections and, as shown
above, are exact if and only if the signal in questionisa
member of L.

4. Two Approaches to Exact Moments Recovery

It is clear from Equations (12)-(15) that a p - th(p>1)
unquantized moment can be exactly recovered from its
quantized counterpart in a recursive manner and for any
desired quantization fineness. However, this first approach
can be parallelized using vector processing. To achieve
this, re-write Equations (12) - (15) in a matrix form as
follows:
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b=dpgg+b (16)
where
B={w pa s ]
bo = [HyMoy Hos Hoal d
2 4
b= 0- g_. 0 Zi_
12 240
and

1 0 00
0. 1 0
4=-L o
4 2
0o -L o
i 2 ]

The computation of the vector g can be rendered parallel
by using, in this case, 4 separate channels, all fed with X,
with the first one consisting of an accumulator E[.] only
that would generate (g, and each of the remaining 3
comprising a multiplier (to generate the corresponding

signal to be accumulated, i.e. X é orX 22 orfé ) and an

accumulator (to produce the corresponding pqi for i =2 or 3
or 4). In the attractive case of a 1-bit quantization with
bipolar output, the multipliers will be binary ones and
hence implementable with EXNOR gates and the
accumulators will simply become 1-bit up/down counters.
Also, given g, both A and b can be pre-computed and stored
in memory to be finally used, in either a purely software or
hardware scheme, in the recovery of the desired vector p.
Note that this approach assumes that X £L;. However, if it
is not, it can always be made so as shown next.

The second approach is parallel in nature, recovers pp
directly from pq , V p 2 1 and relies on a simple
technique of forcing any signal, not already a member of L,,
to become so. This technique was natually derived from
our theoretical studies (see for example [1] or [5]) and
consists of adding a reference signal R that is itself a type-1
member of Ly, to the signal X prior to quantization.

This is, in fact, alternatively known as dithered
quantization and was brought to our attention, in a private
communication, by Prof. Gray who recently jointly
published [6] some results on this technique using Fourier
series techniques rather than arguments from the sampling

theory as we have done. A type-1 member signal of L; is
one that is zero-mean and uniformly distributed over the
amplitude range of the quantizer’s input. Three other types
of signals, called type 2, 3 and 4, can also be obtained from
the basic type-1 signal as shown in [7]. It can easily be
shown that if R €L, and.Y &L,, then (X + R} &L, [5]. In
this approach to estimating ug,, p quantizers are needed,
with each one being fed\wi[h (\'+R),i=1,.,p, where R,
is statistically independent of R; for i =J. Here, the
quantizers’ outputs, Xg;, i = 1, ..., p, are all different from
each other because each quantizer uses a different reference
(or dither) signal. Furthermore, in this case, it is shown in
[5] that the transformation 7}, (xj will take on the form of its
p-D equivalent, i.e. T'....1(x,...,x) Which, because of the
statistical independence imposed on the R;’s, simply
reduces to .

P
Loy () = [ [T (17)
i=|

Now, using Theorem 2, T(x) can easily be shown to be:

Tix) =x (18)
It is now clear from (18) that all member signals of L,
linearize the mean-sense Input/Output characteristics of the
classical quantizer.

The moments recovery equation then becomes:

Ko, =E|:ﬁX ,}=E{ﬁ7}(x):| (19

=E[x]=u,

It is clear from (19) that, unlike in the first approach, no
corrections whatsoever are involved here and only one, as
opposed to (p-1), accumulator is needed. However, the
requirements for (p-1) two-input multipliers is common to
both approaches. As in the first approach, if 1-bit
quantization is used, it would then result in a direct exact
moment recovery scheme enjoying all the aforementioned
practical attributes.

S Simulation Results

The second approach was used to carry out some simulation
work on estimating the autocorrelation function of both a
noise-free and a noisy sinewave using 3 types of correlators:
the Sampled-Data (SDC), the Modified Relay (MRC) and
the Modified Polarity Coincidence (MPCC) Correlators.
These sinewave signals have all been rendered type-1
members of L; by adding to each of them a type-1 reference
signal simulated by either a 10- or 11-bit Pseudo Random
Binary Signal (PRBS). Although not an exact member ol
L, as its Probability Density Function (PDF) is not exactly
uniform, this type of reference signal was chosen for its
combined advantage of providing an excellent
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approximation to an exact member of L and having an easy
digital hardware implementation. Some representative
results from our simulation work are shown in the opposite
figures. All figures clearly show that excellent
autocorrelation estimation accuracy is achieved in both the
noise-free and noisy cases and is in a very good agreement
with the theoretical expectations.

Finally, due to the relationship between moments and
cumulants, an important application of this work is in the
area of exact recovery of cumulants from their 1-bit
quantized counterparts. This is being currently
investigated.
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