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ABSTRACT

In this contribution three examples of techniques that
can be used for state order estimation of hidden Markov
models are given. The methods are also exemplified us-
ing real laser range data, and the computational burden
of the three methods is discussed. Two techniques, Max-
imum Description Length and Maximum a Posteriori
Estimate, are shown to be very similar under certain
circumstances. The third technique, Predictive Least
Squares, is novel in this context.

1 INTRODUCTION

A phenomenon that often occurs in the segmentation
process is the spurious jumping in the state estimate
of a hidden Markov model (HMM) when more states
than needed are used. The reason for that is that the
algorithms use all available degrees of freedom, i.e., the
algorithms actually segment the signal/image into M
segments if the signal model’s underlying Markov chain
has M states. There is obviously a need for estimation of
the number of states before applying the segmentation
routine.

Example 1.1 Assume that a white noise sequence, depicted
in Fig. 1, is given. The natural choice for the number of
states to model the white noise sequence is 1, since there
are no jumps in the signal. If we, however, choose a two-
state Markov chain and apply the Baum-Welch algorithm to
segment the signal into two segments the result is the one
found in Fig. 1.

The paper is organized as follows. First a problem for-
mulation and a motivation for looking into this kind
of issues, is given. Then the three algortihms are pre-
sented, and finally a example including data from a laser
range radar system, is presented.
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Figure 1: Left: White noise sequence with variance 1.
Right: Resulting segmentation of the white noise signal
using two states.

2 PROBLEM FORMULATION

We will first introduce the concept of hidden Markov
models (HMM).

Definition 1 An AMM is a doubly stochastic process
with one underlying process that is not observable, but
can only be observed through another set of output pro-
cesses that produce the observed data. The underlying
hidden process is a Markov chain.

The HMMs are being used extensively in a variety of
areas. The standard issue is how to estimate the pa-
rameters in the model producing the output and how to
estimate the unobserved Markov chain sequence. There
is a vast literature on the above mentioned topic, see for
example [1, 5]. An often circumvented problem is how to
decide on how many states to use in the assumed hidden
Markov chain. In practice, when one is confronted with
, e.8., a segmentation problem, that kind of information
is seldom known. However, it is, crucial for the result of
the applied algorithm.
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3 THREE ALGORITHMS

In this section the three proposed algorithms are pre-
sented. The complete derivation of the expressions will
be left out in this paper. For a complete version of the
paper see [2]. The hidden Markov sequence will be de-
noted by zttl’, meaning the sequence from time instant ¢;
to t2. The subscript is suppressed when ¢; = 1, and the
superscript is suppressed when ¢ = ¢;. The observed
process is denoted by yff

3.1 Minimum Description Length

Assume a sequence y" is given and we know it has been
generated by a finite state source, but we do not know
the number of states M°. In the sequel M° will denote
the "true” value of the model state order, M is the aux-
iliary variable denoting the model state order which is
tested by the algorithm and M the estimate of the model
state order. Usually a criterion is calculated for different
values of M and then an M is chosen as an estimate.
The desired result is, of course, that M = M°,

Assume that for every M we have a code ®3;. A code
can be described as a mapping from the source symbols
to a series of bits. The mapping takes into account the
distribution of the symbols. All the information the-
oretic techniques boil down to finding an appropriate
code @) for coding the sequence yV, calculating the
code length for different codes and then picking the M
for which the code ®,s gives the shortest code length
when coding yv. We have chosen the minimum de-
scription length (MDL) (3] as coding principle. Shortly,
the MDL principle can be summarized as choosing the
model that minimizes the number of bits it takes to de-
scribe the given sequence. Note that not only the data
are encoded, using the model, but also the model itself,
i.e., the real-valued parameters in the model. How does
this apply in the HMM case? The overall number of bits
will be the sum of the number of bits for describing the
data and the model. If the number of parameters in the
chosen model is denoted by d and M is the number of
states the following expression is obtained

1 & log, N
V =log, (NZe?) +(d+ M(M - 1)+1)%.

i=1

The expression above has to be calculated for different
M, and the state order estimate is the M which gives
minimal V.

3.2 Predictive Least Squares

The predictive least squares (PLS) idea originates from
[4]. We start with a basic regression problem. As-

sume two sets of observations y"v and z™ (i), where
it = 1,...,M, are given. The usual procedure when
applying least squares is to introduce a model class and
to pick a predictor for y;. The predictor is denoted by
$:(6;y*"1). The ideal predictor should then minimize

Eg(ys — 5:(6;9°71))%. 1)

If the expectation in (1) is replaced with a sample mean
the following estimate is obtained

N
A .1 . 2 :
0 = arg min — ;(yt — 7:(8))°. (2

Note that the estimate of 6 is based on the whole data
set. The PLS approach is to change the predictor to
§t(0:-1;4*1), i.e., at every time instant the parameter
vector § minimizing the criterion (2) is calculated using
past data only. The parameter vector estimate will vary
in time, since the number of data on which it is based,
grows. If then all the prediction errors are accumulated
we the following criterion is obtained

N
Vers(M) =Y (e — §e(6r-1;4""1))?,
t=1

where M is the number of regressors z included.

In the HMM case we first have to calculate the one step
predictor and then go through the PLS procedure for
the HMM case. We also point out difficulties in proving
consistency, although in simulations the method shows
good results. The procedure is to use the EM algorithm,
see for example [1], to estimate the state sequence and
the probabilities a;(t) = P(z]|Y?), where 2, is the state
of the Markov chain at time instant ¢, and Y* is the
data sequence up to and including time instant t. The
prediction §sy1 = E{y:+1|y*} and can be calculated as
follows .

P(yt+1|yt) = ZP(yt+1lyt,zt =) P(z; = ily)
i
= ZZP(yt+1|zt+l =gyt 2z =1)-
i i

P(zt41 = jlze = i,y") Pz, = ily")
=33 Plyerlets = 4,90 gijau(t),
7 3

where ¢;; is the transition probabilities for the hid-
den Markov chain. Taking expectation of the variable
{yt+1|y*} results in

Ge1 =D > E{ysalzens = 5,y laiea(t),  (3)
i

2
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where the expectation usually is straightforward to cal-
culate.

Since we do not know anything about the behavior of
the PLS-criterion as a function of M we have to adopt
an ad hoc rule when actually searching for the minimum
of the criterion. The procedure of calculating the PLS-
criterion for different model state orders M is rather
computationally costly. For every M a new EM algo-
rithm has to be run.

The procedure when using the EM algorithm and PLS
is the following:

1. Decide which model state orders that are to be
tested.

2. Decide what search strategy to use when testing
different number of states.

3. Run the EM algorithms in accordance to the de-
cided strategy testing the different state orders.

4. Sum the “honest” prediction errors.

5. Chose the state order that gives the lowest accumu-
lated cost.

In step two, with the word “strategy” we mean the order
in which the different EM algorithms for different model
state orders should be tested.

In step four and five, at time instant ¢ the EM algo-
rithms are run on the data up to ¢ and y:y; is pre-
dicted according to (3). The squared errors €2, (M) =
(Y441 — Ge+1(M))? are summed up and finally when the
row is completely processed we choose the number of
states to equal the number of states of the model which
minimized the PLS criterion.

How to choose the number of states to test is an intri-
cate question. In our simulations we have chosen an ad
hoc solution, we simply start from one state, and then
increase the number of states by one until the PLS crite-
rion stops to decrease and starts to increase. The usual
behavior of the PLS criterion for different M is a rapid
drop when we increase M and then when M passes the
right number of states, i.e., M > M?°, the PLS criterion
starts to increase slowly. As the estimate we simply
choose the value of M if the PLS criterion starts to in-
crease for M +1. The drawback of this procedure is that
some a priori knowledge about the number of states is
needed to avoid numerous testings. In our application
we know that usually the number of states are one or
two. It is very unlikely that we will need more than four

3

Figure 2: Resulting accumulated error obtained when us-
ing PLS and an increasing number of states of the hid-
den Markov chain. The minimum is obtained for three
states which is in accordance with the problem state-
ment.

states. This knowledge, of course, influences our test-
ing strategy (start with one state and then increase the
number by one). General advice is difficult to give.

Example 3.1 In this ezample the PLS-method for model
state order estimation is applied to a synthetic signal. We
first generate a sequence of states from a three-state Markov
chain. Noise is then added according to the following relation

ye = 2¢ + 0.1ey,

where e: is zero mean and Gaussian white noise with vari-
ance 1.

If then the previously described PLS procedure is applied in
state order to estimate the number of states of the Markov
chain we obtain the following accumulated error shown in
Fig. 2.

The behavior of the PLS-criterion in Example 3.1 is typ-
ical. The quick drop when increasing the model state
order towards the true one. After the true model state
order is passed the trend is not so obvious. Depending
on the realization and if short data sets are used the
model state order can be overestimated.

Cousistency of the Estimate One important ques-
tion regarding the estimate is, of course, the convergence
of the estimate when the number of data tends to infin-
ity. This question proves to be very difficult to answer
and we have not arrived at a satisfactory treatment of
that matter.

3.3 Maximum a Posteriori Estimate

The last approach is based on using a bank of Kalman
filters when estimating the model parameters of the
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model behind the observed data, and the state sequence.
The Kalman filters also give the distribution of the es-
timates, so for example the distribution of the data as-
suming no underlying Markov chain is given by the fol-
lowing expression

N -1/2
PN = @2n)N? (H det S,,) e~ VN,

i=1
where S; is given by the following equations

St = <PTPt—1<Pt + A
P, =P,y — P1¢:S; 0T Py,

V is the normalized sum of prediction errors and ¢ is
a known vector.

When a Markov chain with M states is introduced, and
after some calculations, the following expression for the
likelihood of the data is obtained

Tne TMm . .
2 Vi d(i)log N (i
- Z1og PN M) Y N0 4 3 JDENE)
=T =T

' (4)
In the expression above d(i) denotes the number of pa-
rameters of the output process model corresponding to
different Markov chain states, T; denotes the set of time
instants where the Markov chain is in state ¢ and N (i)
denotes the number of elements in T;. The result is
striking in its similarity with Rissanen’s MDL criterion.
If we have prior knowledge of the transition matrix @, or
maybe have it as a design parameter, we can calculate
the a posteriori probability for the states in a straight-
forward way.

4 EXAMPLE

In this section the MDL approach is tested using an im-
age obtained by a laser range radar. The pixel values
are the distance to the terrain measured by a laser. The
objective with the segmentation algorithm, in this case
the EM algorithm, is to find objects in the image that
differ from the background, in other words a first step
towards object recognition. The test image that is used
here shows a shield in the middle of the image, and in
the upper right corner there are some bushes. The way
to interpret the segmented image is to look at connected
areas with the same segment label, and then do further
investigation by taking the estimated parameters of the
observed model, variance of the residuals, etc, into ac-
count. The problem we are stressing here is that usually
the user has to pick the number of hidden states of the
Markov chain for each row (or fix one for all rows) since

the image is segmented row by row. Here we used the
above proposed MDL loss function. Similar results are
obtained by using the MAP loss function. The estima-
tion routine, however, is different in that case. In Fig. 3
the original laser image and the resulting segmentation
is shown. Note that in the area “in front” of the shield
only one hidden state is used, and that way spurious
jumping as in Fig. 1 is avoided.
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Figure 3: Left: The raw data obtained from the laser sys-
tem. The z-axis is the distance to the terrain. Right: Re-
sulting segmentation of the laser range radar image us-
ing EM and the MDL strategy.

5 CONCLUSIONS

Three different algorithms for state order estimation of
hidden Markov models are compared. The performance
and computational complexity of each algorithm is in-
vestigated. In the paper it is shown under what circum-
stances MDL and the MAP estimate coincide.

References

[1] B.H. Juang and L.R. Rabiner. “Mixture Autore-
gressive Hidden Markov Models for Speech Signals”.
IEEFE Trans. on ASSP, 33(6):1404-1413, December
1985.

[2] P. Pucar. Segmentation of laser range radar im-
ages using hidden markov field models. Link6ping
studies in science and technology. thesis no.403, liu-
tek-1ic-1993:45, isbn 91-7871-184-3, Department of
Electrical Engineering, Linkoping University, Swe-
den, 1993.

[3] J. Rissanen. “Modeling by Shortest Data Descrip-
tion”. Automatica, 14:465-471, 1978.

[4] J. Rissanen. “A Predictive Least-Squares Princi-
ple”. IMA Journal of Math. Control & Information,
3:211-222, 1986.

[5] R.G. Whiting. Quality Monitoring in Manufacturing
Systems: A Partially Observed Markov Chain Ap-
proach. PhD thesis, University of Toronto, Canada,
1985.

1815



