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ABSTRACT

A procedure for estimating the parameters associated
with a linear phase signal is developed. When the da-
ta being modelled is composed of a linear phase signal
corrupted by additive Gaussian noise the approach tak-
en results in maximum-likelihood estimates of the lin-
ear phase parameters. These estimates are useful for
detecting and estimating the presence of symmetry in
both one and two dimensions. The effectiveness of the
estimates is tested on both synthetic and real images.

1. INTRODUCTION

The concept of symmetry plays an important role in
digital signal processing. A generally complex-valued
one-dimensional (1-D) signal is said to be symmetric
about the point n, if its elements satisfy the conjugate
symmetry property z(n—n,) = &(n,—n) for all integer
values of n. (The overbar symbol here being employed
denotes complex-conjugation.) It is well-known that a
symmetric signal has a linear-phase Fourier transform,
as the phase spectrum of the transform is specified by
e~iwno  With these facts in mind, it is appropriate
to consider the problem of detecting and estimating
symmetry in data by examining the linearity of phase
in the transform domain.

Formally, a sequence of complex numbers s(n) is
said to be linear phase if for appropriate real numbers
r, and angles 8, ¢, we have

s(n) = rpel (n+9), (1)

The parameters r,, are called the amplitudes, and they
may be either positive, negative, or zero. The parame-
ter @ is the incremental phase, and it measures the rate
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at which phase changes from one index to the next;
the parameter ¢ is the initial phase, or equivalently the
phase at n = 0. The primary aim of this paper is to
develop methods for optimally estimating the param-
eters of the linear phase signal in (1) from noisy mea-
surements. Suppose that in general there are available
M observations ., of the signal, with 1 < m < M,
where each z,, is of length N,,, and moreover

zm(n) = Pl CPFem) 4y (n); 1< n< Np. (2)

The complex-valued term wy, is intended to represent
either measurement noise, a portion of the signal that
is not linear phase, or a combination of both. Without
loss of generality the measurement interval for each ob-
servation is assumed to commence at index n = 1. The
quality of estimates for the signal amplitudes {rmn},
the initial phases {¢m}, and the incremental phase ¢
shall be measured by the normalized sum of squared
errors criterion
M Ny

Z lem(n) — rpel Intém)|2

m=1n=1
TN (3)

Yo lzm()l

m=1n=1

It is desired to select {rmn}, {#m}, and 8 to minimize
this criterion.

The parameter estimation literature contains re-
sults on special cases of the problem considered here.
In particular, when all the amplitude terms rmy in (2)
are known to be equal to a constant A, the problem
of estimating parameters to minimize (3) is the stan-
dard discrete-time frequency estimation problem that
has been the subject of much research [1]. The princi-
pal new contributions of this paper are the following:
(1) to determine the optimal estimates in the variable
amplitude case; (2) to provide applications to symme-
try axis estimation in image processing.
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2. OPTIMAL ESTIMATES

Noting that the generally suboptimal selection r,,, =0
causes (3) to equal one, we conclude that the minimum
value assumed by this normalized criterion must always
be contained the interval [0,1]. A criterion minimum
value close to zero (one) is indicative of a good (poor)
linear phase signal fit to the empirical data. It is to
be further noted that when the additive term {wp,(n)}
corresponds to uncorrelated samples of a zero mean
Gaussian random variable (i.e., white noise), then min-
imization of (3) leads to mazimum-likelihood estimates
of the linear phase parameters. Furthermore, if these
samples of a Gaussian random variable are correlated
(i.e., colored noise) then the approach now to be taken
can be straightforwardly modified to obtain the desired
maximum-likelihood estimates.

Minimization of (3) with regard to the estimates is
carried out by equating to zero the partial derivatives
with respect to the estimates. The resulting set of e-
quations is straightforward to solve; we omit the details
and simply state the results in the following theorem.

Theorem 1 Let the measured data be specified by the
multiple measurements model (2), in which the {wy,(n)}
terms represent uncorrelated samples of a zero mean
Gaussian random variable. It then follows that the

mazimum likelihood estimates of the parameters 9, {¢n },

and {rmn,} are given by minimizing the squared error
criterion (3). Specifically, the optimum selection of the

parameter 6 is given by
6° = ar , 4
g{ o2 } (4)
and the optimum choices of the initial phase angle pa-
rameters are specified by

M Npm

Z Z :cm(n) 2ej2€n

m=1ln=1

1 wll 290
é, = iangle{z sz(n) 2¢28 "} , (5)

m=1n=1

with the optimum amplitude parameters then being com-
puted according to relationship

o xm(n)e-i(0°n+¢‘,’,.) + im(n)ej(gona-c»;’n)
mn = 2 -

T (6)
It is noted that the estimates of §° and ¢%, may be
implemented efficiently with the aid of the Fast Fourier
Transform algorithm.

Although we do not provide the proof here, it may
also be shown that these estimates are symmetrical-
ly distributed around their true values, and that the

Cramér-Rao lower bounds on their variances are as fol-
lows (with o2 denoting the variance of the complex
Gaussian noise):

2

8] > i 0% 2

22 anrfnn Ng

m=1n=1

(7
(8)
Similar results have been obtained for the discrete-time
frequency estimation problem [2]. However, the pres-

ence of variable amplitude terms r,,,,, makes the linear
phase problem addressed here significantly different.
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3. APPLICATIONS TO IMAGE
PROCESSING

The estimation theory that is developed in the previ-
ous section, ostensibly for 1-D data, is also useful for
analyzing symmetry in two-dimensions (2-D). This has
applications in some image understanding problems—
for example, automatic recognition of vehicle rears in
an image [3]—where estimating symmetry parameters
1s important. While there are several types of sym-
metries in 2-D, we focus here on reflection symmetry
about an axis in the plane, and we develop the optimal
least-squares estimate of the reflection axis’ inclination.

3.1. A useful decomposition

The transformation of any symmetric signal in the time
domain to a corresponding linear phase signal in the
frequency domain is one of the fundamentally impor-
tant properties of the Fourier transform. It is appro-
priate therefore to seek an orthogonal decomposition
for images that transforms reflection symmetry about
an axis in the plane to a corresponding set of linear
phase coeflicients. One such decomposition is sketched
below; a more detailed treatment is available elsewhere
[4].

For any integer n, the n-th order Bessel function of
the first kind, denoted J,, is given by the integral

n
Ja(r) = %/ cos(ng — rsin(¢))de; r>0. (9)
0
We use only the functions Jy and J; in what follows.
For £ > 0, let a; denote the nonnegative roots of
the equation rJy(r) = 0, arranged in mcreasmg or-
der. These roots play the role of “frequencies” in the
decomposition that is described below.
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Theorem 2 The following functions are orthonormal
with respect to the polar measure rdrdf on the disk
{(r,0):0<r <R, 0<0<2r}:

1 (637 :
Dy x(r,8) = —————Jo(—=r)e’™’. 10
",k( ) ﬁRlJO(ak)' 0( R ) ( )
Moreover, any square-integrable function f on the disk
may be expressed in the following series:

oo +oo

f(r,0)=>" > F(n,k)Dux(r,0), (11)

k=0n=-oco

with the coefficients being determined by the integrals

2r R
F(n k) = /0 /0 £(r,0)Dg(r,0) rdrds.  (12)

The series coefficients F'(n, k) are called the Fourier-
Dini coefficients of the function f.

3.2. Properties of the Fourier-Dini coefficients

Let p be the center of mass of an image f. It is easily
shown that any reflection symmetry axis of f must pass
through g. Furthermore, let F,, denote the Fourier-
Dini coefficients of f, computed in a disk of radius R
centered at p. If the inclination of the axis of symmetry
is 6y (measured counterclockwise from the horizontal),
then we have the following identity:

fu(r,0 —80) = fu(r, b0 = 6). (13)

From (12) it follows that the corresponding Fourier-
Dini coefficients must satisfy the identity

Fu(n, k)e i = F,(n, k)ei". (14)

This in turn is satisfied if and only if the coefficients
are linear in phase, i.e., for appropriate real numbers
R(n, k), we have

Fy(n,k) = R(n, k)el™%. (15)

In practice, it is more appropriate to model the ob-
served coefficients of a reflectionally-symmetric image
as follows:

F,(n, k) = R(n, k)e!™% + W(n, k) (16)

Here the complex-valued terms W(n,k) represent ei-
ther errors in digital computation of (12), errors in com-
puting the center of mass y, or the contribution from
a portion of the image that is not perfectly symmetric.
With such data, the optimal least-squares estimate of
6o is obtained by using the estimator in Theorem 1.
It is noted that the initial phase parameters ¢ consid-
ered there are all zero in this particular application,
although they may be otherwise in different applica-
tions.

Example 1 Two sets of experiments were conducted
to test the performance of the proposed symmetry az-
s estimation algorithm. The first set was performed
on synthethic noisy images, and they investigated the
effects of the following on estimator accuracy: digital
computation of (12), the estimates in Theorem 1 be-
tng computed using relatively few Fourier-Dini coeffi-
cients, the signal-to-noise ratio, and the orientation of
the symmetry azis. The second set of experiments in-
vestigated the effectiveness of the proposed estimators
on various real images. All computations were done us-
ing the built-in Bessel function routines in MATLAB
© on a standard {86-based PC. The results are now
described. '

The following function is reflection symmetric about
the y azis:

g(:z:, y) — yxZe—(z2+y2)/2ac. (17)

Synthetic tmages were generated by plotting various ro-
tations of ¢ on a 201 x 201 grid centered at the origin,
with white Gaussian noise n(z,y) edded. The center of
mass p was estimated on each noisy image f = g4 n
as follows:

u=;2yj[ : ] f(z,v), (18)

the summation being carried out over the entire do-
main of the tmage. Qbviously this estimate of p is
sensttive to the noise in f, but its reliability did not
pose a problem in our experiments, even in high levels
of noise. With R = 50 pizels, the Fourier-Dint coef-
ficients Fy(n, k) were computed for 1 < n < N, and
1<k< M, whereboth N=M=2and N=M =3
were used. The rationale for choosing these orders was
to determine the effectiveness of the estimation proce-
dure with relatively few coefficients. The inclination of
the symmetry azis was then estimated from the coeffi-
cients by using the methods of Theorem 1. The entire
estimation procedure, including calculation of the co-
efficients F,, took less than 5 seconds to compute for
each image. Figure 1 shows a typical image, having 5
dB SNR, with the estimated azis superimposed. QOver-
all, good performance was observed on these synthetic
images.

The second set of experiments was conducted on
various real images of symmetric objects. Our aim was
to determine how well the symmetry estimators per-
form in typical industrial inspection tasks, where both
the lighting and the background can be controlled, mak-
ing the objects under view easy to separate on the basis
of intensity from the background. Here, the intensi-
ty thresholds governing the separation were determined
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manually, but with controlled lighting this should not be
difficult to automate. Other forms of object/background
separation, for example from range data, may also be
used. Once the separation was accomplished, the center
of mass was estimated by (18). The mazrimum radius
R was then determined manually by inspecting the size
of the object. This may also be automated by measur-
ing the mazimum distance of a pizel in the object from
the center of mass, or it may be set as a constant if
the size of all objects under consideration was known
beforehand. The estimation procedure previously men-
tioned was then applied. The entire procedure took less
than 2 minutes for each image, the time increasing over
the previous set of experiments because not knowing R
beforehand prevented us from using table lookups of the
basis functions. Figure 2 shows a typical result with the
estimated azxis of symmetry superimposed.

4. CONCLUSIONS

The aim of this paper is to develop optimal estimates of
the parameters of linear phase signals from noisy mea-
surements. When the noise is Gaussian, the estimators
that are developed here are the maximum-likelihood
estimators. They are applicable to both 1-D and 2-D
data. In tests conducted on various synthetic and real
images, accurate estimates were obtained of the incli-
nations of reflection axes.
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Figure 1: The synthetic image g(z,y) with Gaussian
noise added, with SNR=5 dB. The estimated axis of
symmetry is shown superimposed.

Figure 2: A pair of pliers shown with the estimated
symmetry axis superimposed. The normalized error
criterion is 0.11 with 9 coefficients.

1811



