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ABSTRACT

We propose a method for the parameter selection for
a Bayesian reconstruction of 1D or 2D signals, con-
stituted by locally homogeneous regions, from incom-
plete and noisy projection data. A piecewise Gaussian
Markov model (PG MM), defined as a sum of trun-
cated quadratic potential functions, is used to regu-
larise the reconstruction, which is otherwise ill-posed.
This model is called the weak string in 1D and the weak
membrane in 2D [1].

The posterior energy is highly non-convex and the
MAP estimator is piecewise continuous; the model pa-
rameters play a particularly decisive role.

The resolution of the reconstruction — the finest re-
coverable features — is determined jointly by the param-
eters and the observation model. On the other hand,
we propose a method for the determination of the pa-
rameters in order to reach, or at least to approach as
closely as possible, a desired resolution. This model
needs the evaluation of several posterior edge detection
thresholds.

1. Introduction

We treat the general discrete linear observation model
relating the original signal * € RM to the noisy data
y € RV by

y=Az" +n. {1)

x* is defined on an M-points lattice, say S, which can
be 1D or 2D. The observation operator A is known
and is generally ill-conditioned. A typically performs a
Fourier transform (FT) on an irregular set, or a Radon
transform, etc. n is the observation noise, which is sup-
posed white, Gaussian, with known variance o2.

The reconstruction of =* from y is an tll-posed in-
verse problem [2]; the solution & is defined as the max-
imum of the posterior law P(z|y), or equivalently, the

(global) minimum of the posterior energy £:

arg min&(x) (2)
Az - yl|* + &(=); ®3)
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where & is parameterised by {«, A) and corresponds to -
the log-prior.

The edges of a locally homogeneous signal contain
a crucial visual information. They can be addressed
using a sum of truncated quadratic potential functions:

o(z) = Z d(z:i — zj), (4)
ijEV:
o - (B 8 ST r

where V; stands for neighbourhood of ¢ and ¢ is a first-
order difference — a transition, t;; = z; — z;,j € Vi.
Thus defined, ® models a piecewise Gaussian Markov
random field with an implicit boolean edge process!.

Indeed, for |t| < T the transition t is regularised
with (At)?, and 4, j belong to the same homogeneous
zone, while for |t]| > T, ¢(t) = const, so that an edge is
located between ¢ and j. Then T is the prior discont:-
nutty detection threshold.

2. The model parameters

£ has numerous local minima: they represent various
alternatives for the edge process. It is the model pa-
rameters (a, A) which control whether the global min-
imiser corresponds to the most reliable edge process.

Parameter selection remains an open question in
estimation theory. Different approaches can be de-
vised. The empirical one considers (e, A) as regulation
“knobs”. Statistics provide a frame for their estimation
from the data or from some priors; this often leads to
considerable numerical difficulties (e.g. [3]).

A third approach, qualifiable as analytical, aims to
“correctly” position @& — the minimum of £ - by the
means of (o, A). (Note that this is rarely feasable.) In
our context, we shall select (o, A) such that for some
classes of original signals «*, the estimate & has the
same edges as «*, and is the closest to =*.

ILet 1 = {1,...,1]T; we suppose that 1 € ker A, else Vx €
RM, vk e R, E(z+ k1) = £(z). Then £ is integrable, while ¢ is
integrable only for Zz.- fixed; in our case, this has no practical
consequences.
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For a direct observation 4 = I, the behaviour of &
as a function of (&, A) has been analytically studied in
[4], [1], (5], etc. This has given rise to several posterior
edge detection thresholds of *, dependant on (a, ).

For a general observation operator A # I, these
thresholds cannot be calculated analytically any longer;
instead, they can be evaluated numerically. They per-
mit in particular to quantify the resolution of the recon-
struction — the finest features, which can be drawn by
the edge process involved in &. In our context, the res-
olution appears to be strongly limited by both the spec-
trum of A and the noise resistance requirement. Con-
versely, the optimal (a, A) should incorporate a com-
promise between a desired resolution — the size of the
smallest features sought for — and the resolution effec-
tively allowed by .4 and the stability requirement.

The method proposed below works for operators,
for which the contributions of the samples z} to the
data are similar. This requirement, physically appeal-
ing, is precised later; note that it fails for the Laplace
transform, which needs a specific treatment [6].

3. Posterior thresholds

We consider several 1D 1-height original templates *(1),
which are simple enough but exhibit the edge detection
capability of the estimator, and permit to determine in
the noiseless case the set of the possible local minima of
£. These are mainly steps s, gates g and rampsr. Con-
struct the family of original f-height templates «*(8) -
scaled copies of =*(1):

x"(8) = 9=*(1). (6)
For n = 0 the “clean” data y* = y — n are also scaled:
Y™ (0) = Az™(6) = 6y™(1). (7)

Let x*(#) have a 6-height jump located at (m, m +
1). Suppose that for 8 € {6y,6,}, £ admits two local
minimisers — z(%)() continuous at (m,m + 1) while
z{(1)(8) with a jump at (m,m + 1) — and that it exists
a ©, such that for # < © the global minimiser is & =
z(0)(9) while for 8 > © it is # = 2(1)(§). We call this
critical value © the posterior edge detection threshold.

Remark that each local minimiser is linear with
respect to the data. Let D be the first-order differ-
ence operator: it is (M — 1 x M), circulant and its
first row is [-1,1,0,...,0]. Let k& = ky,...,k, and
let Dy, = Dg, &, be the same as D except the rows
ki, .., kn, which are entirely zero. If 2(°)(#) has edges
at (kl, ki + 1), ceay (kn, kn + 1),

3(=00) = M Y _[z(0) - 2V (0)2 + ne,  (8)
igk

so for 6q < 8 < 8y, z(o)(é?) is the minimiser of
Fyle) = ey O +I\Dgall,  (9)
200) = Hpy(6), (10)
where, in order to simplify the presentation, we used
Hy = (ATA+ X DI D) 1AT,
[ H = (ATA+xDTD)-147. (11)

(Note that if k = @, then F = ||.||> + ||AD=||2.) Simi-
larly, z(1)(6) is the minimiser of ¥y, ,, and

z0(6) = Hy, .y (6). (12)
The relevant posterior energies are

[5(2(")(9)) = F(=90)) + na,

£=00) = Fp, (V) +(n+1)a,

so that the global minimiser & is non-linear w.r.t. y:

[S(z(°>(9))<5(z<1>(9)) = @ = z0)(g)
E(z09)) > £(=z1(9)) — & =21).

The latter system exhibits the piecewise continuity of
z w.r.t. y. © is the solution in # of the equation

| E(z1(0) = £(=1(8)), (15)
which, using that F(z()) = 62F (2(1)), leads to

(14)

(04

&= \/}'k(z(o)(l)) — F O

Clearly, © accounts for .4 and depends on (a, A).
The step recovery
Consider the original signal (Fig. 1(a))

z"(@) =08, Sm;= O]I,'Sm + Lism, 8 €R, (17)

(16)

where 1l stands for indicator function and s,y is a Heav-
iside function centered at (m, m-+1) with elements s,,;.

Given the noise-free observation y*(6), £ can have
at most two local minimisers:

z0(0) = 0HAs,, and 200(6) = 0s,,.  (18)

Indeed, £ can have an unique continuous local min-
imiser. When £ has a local minimiser with an edge, the
latter can only be located at (m, m+1), and £(z(V)(§)) =
a, because otherwise £ > o.

Finally, the posterior threshold ©g,  reads

Qs, = [——. (19)

Remark that F does not depend on «. The decrease of
o favours the edge creation; conversely, a = oo leads
to the regularised least-squares.
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The gate recovery
Consider now an a-width gate (Fig. 1(b)):

2°(0) = 09,n(a), Gn(@) = S — Smya.  (20)

Let ©g _(a) be the threshold for the recovery of both

edges. Often, it is reasonable to assume that they ap-

pear simultaneously in the global minimiser?:

200 .
Og_(a) = m’ (21)
2g)(1) = HAgy(a). (22)

When a decreases, ©g_(a) increases (see Fig. 2(a)),
and for a finite, Og _(a) > Os,,
The ramp breaking
Introduce the b-width ramp 7, (b) and consider x*(6)

z*(6) = 0rm (b), (23)

i—m
Tmi(0) = 0licm + _b"I[m<i<m+b + L>mis.  (24)

The gradient of #* form < i < m+bisy = 6/b. When
it is large, the ramp breaks at some p which is close to
the middle (p could be determined numerically). Then
the two alternative solutions are

20(1) = HArp(b) and 2P(1)

so an erroneous edge apears for

or- ()= \/ FED(L)

As previously, ©_ (b) increases when b decreases. If
6 > Op_, several edges can appear in the solution.

(a) (b) ()

Fig. 1. Original templates. (a) Step. (b) Gate (c) Ramp.
4. Therole of A

The samples of * can be said “equitably” represented
in the data if, far from the boundaries (at a minimum
distance b), i.e. for Ym, m € [b, M — b + 1], the step
detection threshold is position independent ©5_ = Og.
From Eq.(19) this occurs if

= HpArm(b), (25)

o

— Fp(z(1)

(26)

M-mM-m
ZZL'J_Z ZL,J—const Ym e [], (27)
L= AT(I - AH)A. (28)

20therwise, 4 possible local minimisers must be compared:
continuous, with an edge at (m,m + 1), with an edge at (m +
a,m + a + 1), with 2 edges.

This relation is satisfied for shift-invariant convolutions,
operators derived from the FT... In the sequel, we sup-
pose it satisfied®, and it turns out that we can also use
Og(a) and O (b) with p = m + int(b/2).

The resolution of the reconstruction {even in the
noise-free case) is limited by the spectrum of A. Let A
perform an incomplete FT, filtered over a rectangular
window [—F, F]; the decrease of Og(a = 8) when the
cut-off frequency F increases, is given in Fig. 2(b). For
small F's, a ramp breaks easily - Fig. 2(c).

(a) (b) fc)
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Fig. 2. Posterior edge detection thresholds. A performs
an incomplete FT on [—F, F] (reduced frequencies); (a,)) =
(5,5). (a) Gate recovery as a function of a: Og(a), a = 5, ..,40,
F = 0.125. (b) Gate recovery as a function of F: ©g(8) for
=[0.1,..,0.5]. (c) Ramp break: ©g(20) for F = [0.1, ..,0.5].

5. Accounting for the noise

Since the estimator is piecewise continuous, it is im-
possible to guarantee that in the presence of noise, &
always remains in the vicinity of the noise-free solu-
tion. Instead, following [1], it can be required that in
the presence of noise, the solution corresponding to a
zero-valued original object, is everywhere continuous.
Let z* = 0, then y = n. The continuous minimiser

z.(,g) =Hn (30)
is global provided that
IDHn| < O41. (31)

The latter condition is strong, since the noise is white
and hence can give rise to jumps which are close to-
gether (a = 1, 2) rather than isolated, and then ©g(a)
> Og. Since Pr(|n;] < 20) = 0.95, in practice it is
sufficient to require

20 max{|DH[1} < Og, (32)

where max{.} stands for maximal element.

On the other hand, inside a homogeneous region,
a transition is regularised with (A¢)2; locally, A can be
regarded as A = o /oy, where o, is the variance of t. So,
large As create weakly varying homogeneous regions.

30therwise, we could set:

©s = min®@s,,, Og =maxOg , Or =minOr,. (29)
m m m
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6. A set of constraints

The priors on z, needed for the selection of (@, ) are

- (@min, Omin): the minimum width of a homoge-
neous region and the minimum height between
two regions;

- (bmax, Ymax): the maximum length and gradient
of a ramp inside a homogeneous region.

Since ©g(a) < Og(amin) if @ > amin, and Op(b) >
Or (bmax) if b < bmax, these priors yield

eg(amin) < Omin and Op (bmax) > bmax7max- (33)

Finally, the admissible (a, A) belong to the intersec-
tion of

a <si(A), a>s3(X), a>s3(N), (34)

where s1, s2, s3 do not depend on o and can be evalu-
ated for some range of variation of A:

1 0
510 = G5 Fzg) (1),
520 = YhaxbhaxF (2P (1) — F (20 (1)),
s3(X) = o?4(max{|DH|1})*F(z§)(1)).

In Fig. 3(a), such an admissible set is shown. The
resolution limitations are quite evident: e.g. a small
decrease of Omin will make this set empty. When this
occurs, a compromise is imperative.

7 a4 8 8w 7 1 16 & % & r

Fig. 3. Parameter selection and reconstruction. A per-
forms an FT, filtered using w(n) = exp(—60(n— %—)2), noisy data
with ¢ = 0.6. (a) The admissible set (the shaded area) 5;(\} = a
versus A, given ¢ = 0.6, (amin,min) = (8,1), (bmax, Ymax) =
(20,0.03); s1(A) (=), s2(A) (--), s3(A) (- -). (b) Reconstruc-
tions of the original signal (..): Usual Gaussian MM with with
(o, A) = (0,3)(-.), PG MM with (a, )} = (1.6,11) (-).

7. Extension to images

A similar approach can be adopted for the determina-
tion of the parameters for the reconstruction of images.
In this case, the original templates are 2D steps, square
patches and 2D ramps. Here again, a continuous local
minimiser z(®) and a local minimiser with edges z(1)
are compared.

A condition for the representation of the pixels in
the data, equivalent to Eq.(28), is straightforward; we
suppose that it is satisfied.

Let z* be an image with edges — a square patch or a
step. Even when its pixels are “equitably represented”
in y, the edges of z{!) can be slightly different from the
edges of *: these differences can occur at the corners
and near to the boundaries, but they exist only for a
tiny range of variation of a. It is then a numerically
negligible approximation to take z(1) = z*.

(a) (b) ()

Fig. 4.“Fourier synthesis example. (a) Original image.
The data is the incomplete FT on [~0.125,0.125] with ¢ = 0.63.
Reconstructions: (b) Usual Gaussian MRF prior. (c) PG
MM: (e, A) = (0.4,16) assures a threshold for the 5 x 5 patch
equal to 1.3 and does not break gradual transitions up to 0.02
per pixel. £ is minimised using a GNC algorithm [7].

8. Concluding remarks

We propose a technique for the numerical determina-
tion of (@, A), aimed at ensuring a correct edge recover-
ing. It is optimal in the sense that it provides the max-
imum resolution allowed by the noise statistic and by
the observation operator. (a, \) should be determined
once for a given class of reconstruction problems.

Its extension to some other functions, such as ¢(t) =
L — d(t), where d is the Kronecker, is straightforward.
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