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ABSTRACT

The paper develops a method of error analysis for Four-
ier-transform based sinusoidal frequency estimation in
the presence of nonrandom interferences. A general er-
ror formula is derived, and then specialized to the cases
of additive and multiplicative interferences. Approxi-
mate error formulas are derived for the case of additive
polynomial-phase interference. Finally, an application
to error-analysis in estimating the parameters of mul-
tiple polynomial-phase signals is discussed in detail.

1. INTRODUCTION

The need to estimate the frequency of a (real or com-
plex) sinusoidal waveform arises very often. When the
signal is clean (free of interference of any kind) the
problem is trivial. Interference introduces errors and
renders the problem nontrivial. Interference, when ex-
ists, can be additive, multiplicative, or more complex.
In this paper we examine the problem of estimating
the frequency of a sinusoid in the presence of nonran-
dom (deterministic) interference. The assumed contin-
uous-time signal model is
y(t) = m(t)e!“*t +a(t), 0<t<T, (1)
where m(t) and a(t) are unknown, but nonrandom func-
tions, referred to as the multiplicative and additive in-
terferences, respectively. The problem is to estimate
the unknown frequency wyp and, in particular, to exam-
ine the accuracy of the estimate as a function of the
pertinent properties of the functions m(t) and a(t).
When there is no specific knowledge about the na-
ture of the interference, common sense and experience
suggest using the Fourier transform (FT), and taking
the frequency estimate as the point of maximum of the
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magnitude of the FT. For a clean signal, the point of
maximum coincides with the true frequency wg. The
behavior of the error in the point of maximum in the
presence of interference is the subject matter of this

paper.

2. THE BASIC ERROR FORMULA

In this section we derive an error formula for the esti-
mated frequency of a continuous-time complex sinusoid
in the presence of additive and multiplicative interfer-
ences. The signal is given by (1) and its Fourier trans-
form by Y(w) = fOT y(t)ei“tdt. Y(w) is assumed to
have continuous derivatives up to a third order (in the
sequel we will use primes to denote differentiations with
respect to w).

The estimated frequency & is defined as the point
of global maximum of |Y(w)|? (or, as was explained
in the Introduction, as some point of local maximum
within a certain frequency range). If a(t) and m(¢)
are “sufficiently well-behaved” (in a sense made precise
below), & will be “close” to wp. To find exactly how
close, we will need the following lemma.

Lemma 1: Let y = f(z) be twice continuously differ-
entiable on the real line R and z4 a point in R. Assume
that:

A: f(z0) # 0 and f'(z0) # 0;

B: the second derivative of f(z) is bounded, that is,
[f(z)] < flax for all z € R;

C: [f'(z0)]? 2 2|f(zo)| flhax-
Denote
9 f(z0)
f'(z0) (2)

Ty =2xg— )
2f fl/
1+ v 1- lfj':((:'-‘oﬂ2
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9L(zo)
f'(20) (3)
2f(z
L+ 1+ el
(the right hand sides exist by Assumptions A and C).
Then there exists £ € [7,z4] such that f(2) = 0.
Proof: See [4].
Corollary: Let z, be a fized point in R and {fr(z),
0 < T < oo} a family of functions on R indexed by
T, each satisfying Assumptions A, B, and C. Assume
further that

Ty =T —

 fr(e0) e _
G @

Then the family of points 7 for which fr(&r) =0 is
given by !

Jr(zo)
fr(zo)
The desired error formula for & is obtained by ap-

plying the lemma to the first derivative of the square-
magnitude of Y (w). Define Z(w) = Y(w)[Y (w)]*. As-
sume that

(1 +o(1)]- ()

Er=z0— 51—

Zl(wo)zlll(w) -0
[le(wo)]2 - (1)' (6)
Then 7'(wo)
& = w0 = {1+ (1) ()

3. SPECIAL CASES OF THE ERROR
FORMULA

We now examine in some more detail two special cases
of the error formula, first the case of a purely additive
interference, and then the case of a purely multiplica-
tive interference.

3.1. Additive Interference

For a purely additive interference, m(t) = 1. Assume
that a(t) is bounded, say |a(t)| < B for all t. For every
nonnegative integer k define Ax(w) = fo tka(t)e~iwtdt.
Obviously, |Ax(w)| is uniformly bounded by BT*+!/
(k +1). Assume further that Ax(wo) = o(T*+!). We
get (see details in [4])

121m{A1(w0) - 05TAO(0)0)}

) = wo+ - [+ o(1)]
121m { [t - 0.5T)a(t)e 30t dt |
= wo+ T3 .
[1+ o(1)]. (8)

1The notations o(-) and O(:) are understood to be with re-
spect to T as T — oo.

3.2. Multiplicative Interference

For a purely multiplicative interference, a(t) = 0. For
every nonnegative integer k define

T
w) = km(t)e I (@-woltdy,
M (w) /ot (t)e™ dt (9)
Then we have
Z'(wo) = 2Im{M(0)M;(0)}, (10)
Z"(wo) = —2Re{M;(0)M;(0)} +2|M,(0)]*(11)

To exemplify the case of multiplicative interference,
consider a multiplicative interference of the form m(t) =
eI, where {fr(t), 0 <t < T} is O(T~¢) uniformly
in t for some € > 0. Then we get, similarly to the case
of additive interference,

T
2Lt 2,35 DIr®d oy, (12)

(:J:(do

4. ADDITIVE POLYNOMIAL-PHASE
INTERFERENCE

In the remainder of this paper we will concern our-
selves with additive interferences which are sums of
polynomial-phase signals. A complex polynomial-phase
signal is defined as

M
a(t) = Bexp{jp()}, 6(t)=D_ amt™,  (13)
m=0
where 3 is a real constant. To use the results of Sec. 3.1,
we need to compute the integral

T
G=p / (t = 0.5T)/#O=wotlgs (14
0

In the case of linear FM (M = 2), this integral can be
expressed in a closed form, see [4]. When M > 2 there
is no closed-form expression for this integral. However,
a numerical approximation can be derived using the
principle of stationary phase. By this principle, the
main contribution to the integral is accumulated near
the points where the argument of the corresponding
trigonometric function is stationary, that is, its deriva-
tive is zero. Suppose the equation

M
Ft)—wo= Y mamt™—wo=0  (15)

m=1

has solutions {t;,0 < k < K —1} in the interval (0,T’),
where K > 1. Then

K-1 - 1/2
G =~ HZ[W,(t )I] (tx — 0.5T)

exp{7j sign[¢” (tx)][é(tr) — wotx] + 70.257},(16)
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where
M

() =" m(m - amt™ 2. (17)
m=2
A Mathematica implementation of the approximation
(16) is given in [4].

5. APPLICATION TO MULTIPLE
POLYNOMIAL-PHASE SIGNALS

Suppose we are given a polynomial-phase signal, as in
(13), and we wish to estimate the phase coefficients
{am}. This can be accomplished using the high-order
ambiguity function (HAF), defined as

T-(p~1)r .
Pyly;w, 7] é/g Pply(t); rle~ 7 dt, (18)

where

AOE H[y<*“(t +(p-1-gnC), (19)

and
q even

* t)r
¢vwé{$m,qwd

Py[y(t); ] will be called the pth-order HAF operator.
Applying the Mth-order HAF to the signal (13) yields
a spectral line at the frequency wo = M!7M~la,,, thus
enabling the estimation of apr. After aps is estimated,
the degree of the phase polynomial is reduced by 1
through multiplication of the given signal by e—iem*™
(this is called the phase-removal step). Then the pro-
cedure is repeated with the (M — 1)th-order HAF, etc.

Recently, Peleg and Friedlander [3], [2] have ex-
amined possible application of the HAF to sums of
polynomial-phase signals, that is, to signals of the type

(20)

L M,
() =) Brexp{ige(t)}, Se(t) = D drmt™

=1 m=0

(21)
When the Mth-order HAF is applied to the signal (21),
it yields a total of L2* ™" terms. If M = M, for some £,
there will be a spectral line at the frequency M,!7M—!
ae,pm, (or more than one spectral line, if M = M,
for more than one ¢). The remaining terms will be
polynomial-phase signals, so they can be regarded as
additive polynomial-phase interferences. In principle,
the L components can be treated one at a time. At
the fth stage we apply the HAF algorithm M, times
iteratively to the £th component, while regarding the
other components as interferences (which amounts to
ignoring them). Note that each phase-removal step re-
duces the order of the currently estimated component,

but not of the interferences, so the interferences remain
polynomial-phase signals throughout.

The tools developed in the previous section can be
used for accuracy analysis of the HAF in estimating
the parameters of sums of polynomial-phase signals.
We will now describe the details of the analysis. We
concentrate on the errors in estimatm%wa single compo-
nent, which we rename as exp{J Yom=o@mt™}. We
assume that 8 = 1 for convenience.

When the Mth order HAF (with r = T/M) is ap-
plied to the signal y(t) = exp{j =M_, amt™} + a(t),
the result is a signal of the form

Py[y(t); T/M] = &1#479) 4 &(1), (22)

where d(t) is a sum of polynomial-phase interferences,
and 71, o are given in [4]. The interferences will cause
the estimate 4; to deviate from 7;. Sections 3.1 and
4 show how to compute the asymptotic error result-
ing from a single polynomial-phase interference. The
total asymptotic error is simply the sum of the indi-
vidual errors. Thus, the analysis of the error in ajs is
straightforward. Let us then continue to analyze the
errors in the lower-order parameters.

Suppose we have already estimated the coefficients
of orders p+ 1 through M, and denote the correspond-
ing estimates by {&m, p+ 1 < m < M}. Denote also
p+1<m< M. (23)

a .
6m—am—a"h

Let z(t) be the signal obtained after removing from y(t)
the estimated phase terms of orders p + 1 through M,
that is,

p M
2(t) exp{jz amt™ —j Z 6mt'"}
m=0 m=p+1

M
+ a(t) exp{ = a,,,t'"}. (24)

m=p+1

Applying the pth-order HAF operator to z(t) yields a
signal of the form

M-p+1

Py[2(t); T/p] = exp{j E 'ﬁt'} +a(t), (25)

where d(t) is a sum of polynomial-phase interferences.
The paper [4] gives explicit formulas for the coefficients
{7i}. As we see, the signal P,[z(¢);T/p] has the form
(up to a constant phase factor)

P,[z(t); T/p] = m(t)el M + e i704(t), (26)

where

M-p+1
ﬁl(t)=eXP{ —iY, it } (27)

=2
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The error between %; and p!{(T/p)*~'a, thus comes
from three sources:

(i) The difference between v, and p!(T/p)* a,.
(i) The additive interference a(t).
(iii) The multiplicative interference n(t).

The total error is asymptotically the sum of the three,
so we can analyze them separately. Error (i) is given
by — Ef:,m mT™ 19, _16m. Error (ii) is treated as
discussed before, that is, using the general additive-
polynomial-phase-interference formula. It only remains
to analyze error (iii). While doing so, we will also prove
the following:

Claim: For all 1 < m < M, the error 6, is O(T-™"1).

The proof is by induction, starting at m = M. The
value of 8y is only affected by error (ii). We have
already seen that the frequency error due to additive
polynomial-phase interference is O(7"2). The coeffi-
cient aps is proportional to the frequency by a fac-
tor [((M!)(T/M)M-1]=1 50 6pr is O(T~M~1). Assume
that the claim holds for p+ 1 < m < M. Using the
induction hypothesis, we see that error (i) is O(T2).
Error (ii) is O(T~2) by the general result for additive
polynomial-phase interference. It only remains to show
that error (iii) is O(7~2). It will then follow that 4; —v;
is O(T—2), hence 6§, is O(T~P~1).

Observe from the induction hypothesis that ¥; is
O(T“ 1) for all 2 < i < M —p+1. Therefore "M ;7P+!
vit' is O(T~!) uniformly in ¢ for 0 < ¢t < T.. The mul-
tiplicative interference (27) thus satisfies the condition
of the second example in Sec. 3.2, with ¢ = 1. We can
therefore use the formula (12) to get

M

T/
1(T/p)~3 / p(t —0.5T/p)fr(tydt = —
¢ m=p+1

m-—p+1 6i ’

(T/p)™ '6m Z m( )ﬂm i-(28)

Since §m = O(T~™-1) by the induction hypothesis,
the right side of (28) is O(T~2), thus completing the
proof.

We note that the expressions for errors (i) and (iii)
can be combined to yield

M
@)+ i) == Y T e mbm, (29)

m=p+1
where

m-p+1

m = p7 E (1+1)(z+2) (m)

> T )

k=0

Note also that &, , = p~?*!p! and 6, is proportional to
the error in 4; by a factor p!(T'/p)?~!. Therefore we
get, using (29) and collecting for 1 <p < M,

[ MM 0 ce. 0
Em-1m EM-1mM-1 - O
L &M &Gm-1 ... &t
[TV 0 0 oM M
0 T™-2 0 SpM-1 | em—1
L 0 0 o1 61 @

(31)

The quantities {¢,} are the additive errors due to the
polynomial-phase interferences. Recall that they are
computed as follows. At the pth stage (except p = M)
we let

M
ap(t) = a(t) exp{—j Z amt"‘}. (32)

m=p+1

Note that replacing &y, as (24) implies, by «, does
not affect the asymptotic error. We then compute the
corresponding G,(t) as the total additive interference
in zp(t) (obtained from y(t) by phase removal and pth-
order HAF). We let 7o = (p—1)Y(T/p)P~*ap—1+0.5(p—
1)pl(T/p)Pap, and finally compute ¢, using the additive
polynomial-phase interference formula with e=77°G,(t).
Once the vector of ¢,’s have been computed we can
solve (31) for the 6,,’s.
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