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ABSTRACT

The Prony method is a technique for modeling a data
set of N samples using a linear combination of p ex-
ponentials (N > p) in a least square estimation proce-
dure. In this paper, a study of the amplitude and
phase estimator is presented. In particular, theo-
retical results are given for bias and variance, which
are confirmed by simulations. An optimal number
of equations in the corresponding least square
estimation procedure is derived, minimizing esti-
mation errors.

1. INTRODUCTION

Our problem is the accurate estimation of the param-
eters of exponentially damped sinusoidal signals from
a data sequence of finite length. One of the estimation
procedures is the Prony method [1] [2]. Prony’s method
is a technique for modeling sampled data as a linear
combination of exponentials. The results obtained by
using this method amount to an approximate fit of an
exponential model by solving least square solution.

There are two basic steps in the Prony method.
Step 1 first determines the linear prediction parameters
that fit the available data. The roots of a polynomial
formed from the linear prediction coefficients will then
yield the estimates of damping factor and frequency of
each of the exponential terms. Step 2 involves the so-
lution of a second set of linear equations, also called
the Van der Monde equations, to yield the estimates of
exponential amplitude and initial phase.

Because of the presence of noise in the signal, the
estimates of roots are biased, which means a bias in the
damping and frequency terms [3] [4]. These estimation
errors are then carried forward into the estimates of
amplitude and phase. This is why, we analyze the be-
havior of the amplitude and phase estimator for a given
set of approximated roots.

The paper is organized in the following way : In Sec.
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2 the classical extended Prony method is recalled. The
bias and variance of the amplitude and phase estimator
which are derived from the approximations to the Van
der Monde error matrix and the pseudo inverse of the
Van der Monde matrix, are presented in Sec. 3. In Sec.
4 an optimal number of Van der Monde equations is de-
duced from the minimization of the mean square error
(MSE) between the true amplitude and phase, and the
estimates. Sec. 5 investigates the performance of this
estimator, via numerical simulations. The conclusions
are in Sec. 6.

2. PROBLEM STATEMENT

Consider the N samples of the observed data sequence,
y(n), which contains a sum of p exponentials, z(n), in
a background of independent, identically distributed
(i.i.d.) complex white noise, w(n) of variance o2 . So
forn=0,---,N-1:

P
y(n) = z(n) +w(n) =) bmZp +w(n) (1)
m=1

with b, = Ame’®m and Z,, = e®mti27/m  where A,
is the amplitude, ©,, is the phase in radian, e, is a
damping factor, and f,, is the normalized frequency.
The frequency f,, and damping factor a,, are found
by rooting polynomial :

A(Z) = 1+ i axZ7k = ﬁ 1-Z,Z7Y) (2

k=1 m=1

where the a;’s are the coeflicients of the recursive dif-
ference equation, forn=p,---, N —1:

P P
y(n) = — Z ary(n — k) +w(n)+ Z ayw(n—k) (3)
k=1

k=1

Thus the extended Prony parameter estimation pro-
cedure reduces to an auto-regressive (AR) parameter
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estimation of an ARMA process by solving the least
square solution of the modified Yule and Walker equa-
tions. N -

Once the Z = e***J“* (“denoting the estimate)
have been determined from the polynomial rooting,
the exponential approximation y(n) involving Eq(1) re-
duces to a set of linear equations in the unknown b,,
parameters, expressible in matrix form as

Vo=y y=z+w (4)
where
1 1 1

o |2 2 %

Z{W—l 2M—1 ZI\;—I

P
- - . 1T
Q=[b1 by +e- b,,]
T

8 = [ B(0) BQ1) B(N —1) ]
8 = z,wory

The solving of the M x p Van der Monde system
(4) leads to the amplitude and phase estimation :

b= (VHT/) Py

Eq(5) shows that noise perturbation is introduced
in the y term, and also in the Van der Monde pseudo

(VH V) VAz+w) (5)

o~ —1 A
inverse (VH V) VH due to the estimation errors of

the roots Zg. Consequently, the study of this estima-
tor causes quite a few problems. So let us assume that
the estimated roots are given once and for all, indepen-
dently of each signal realization.

3. BIAS AND VARIANCE EXPRESSIONS

—~ ~rpm\ —1 oA
As the term V¥ = (VHV) VH is considered con-

stant, then, from Eq(5), bias and variance expressions
are :

e for bias,

e for variance,
Var(d)

-E ([E— E@[z)

=ViE (Q.QH) (\7‘)”

from the assumption E (w.wf) = ¢2.I, I being
the identity matrix, we obtain :

Var() = o2, (VHV) - )

Taking into account that z is an exponential vector
which can be written as £ = Vb, and denoting the Van
der Monde error matrix by AV =V -V, Eq(6) gives

E@) =VWb=p-V1AVD (8)
Let us now consider the following approximations
to AV and V1.
3.1. Approximation to the Van der Monde er-
ror matrix AV

Due to the fact that matrix V consists of terms 2,,, to
the nth power which can be approximated by a first
order series expansion, provided that J|—Z—L <1l:

(Zm)" -

where AZ,, = Zm —

(Zm+AZyR)" = Z7 +nZ0AZ,  (9)

m is the root error, it follows

that :
AV=V-V~a
0 - 0
AZ; T AZ,
2AZ,7,

PIAVAVA

(M- 1)Azngl-2
(10)

(M -1)AZ,ZzM~?

3.2. Approximation to the pseudo inverse 1%

The matrix V#V has the following structure :

~H ~ ~H ~ AHA
Vl Vl Zl KZ t Vl

~H ~ ~H —~ ~H T

o~y vV,V, Vv, VvV, --- V¥V V
VHV — 2. 1 =222 . 2. (11)

Ha ~H~ ~H A

- ~ - - T

where V, = |1 Z, Z2 zM-1 » 1 <

m < p. Comparison of the diagonal with the off di-
agonal terms, enables us to say that diagonal terms
are preponderant. Their expressions are :

2May
~H ~ e " if@, #0
szm = 1—e2om Am
M if B =0 (12)
H l_eM(:m+:k)€jM(:m—:k)

1—elemtay) gilwm—wy)
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If we suppose that damping factors approximate

~H ~
to zero, this amounts to comparing |szkl to M.

~H ~ —~ —~
lzml/_k then becomes equal to M when &, = @i or

else Oy, — @ = 7 ( for &, and @ =~ 0 ), but these cases
are fanciful. In the end, off-diagonal terms are insignif-
icant compared to diagonal terms. So to approximate
the inverse of VAV amounts to inverting a diagonal

matrix : a
(?HV) ~
[ __I:L:L 0 . 0 |
1_e2Ma1 .
0 =2 0
1—e2Mag (13)
0 0 0
0 l_emxp
L 1—e2M°P _

For nearly zero damping factors, matrix (13) can be
simplified to :

77"~

which implies that the approximation to the Van der
Monde pseudo inverse is :

I

-~ 1~

Vi~ —VH 14

= (14)

In what follows, we investigate the particular case

of the undamped exponential signal. Thus estimated
damping factors are close to zero.

3.3. Approximations to E(E) and Var@)

It follows from Eq(8), Eq(7), and approximations (10)
and (14) that,

e for bias,
E(bx) — b = —MZLAZ, Zrby,
—1 zp: AZ:Z:G(Z:Z)b; (15)
M il i4) )00
i=Tiztk
) 1+ (M —1)zM — MM~
with G(z) = 0= 27 (16)
e for variance,
R _ g2 2
Var(b) ~ 0,21,—-}——6—— ~ e (17)

1—e2May, M

According to these results, both bias and variance
depend on M. Bias can be shown to consist of two
terms :

e the first, —A—’[,fiAZk Z;bk, which is the main term,
is proportional to M.

P
e the second, —3; )

i=1;i#k
duces oscillations around the first term.

AZ.ZyG(Z:Z0)b;, pro-

From Eq(17) we can see that when M increases vari-
ance decreases. The asymptotic variance for the term
by is

Vv ’i; 2 (1 _ 2;,‘) :
ar) ,— 0% (1-e (18)

4. OPTIMAL NUMBER OF VAN DER
MONDE EQUATIONS

An optimal number M, , that minimizes MSE dj can
then be determined :

_~ 2
dp = E(Ibk—bkl )

= Var(Ek) + IE(E):) — by

2
| (19)

Substituting Var(bx) from Eq(17) into Eq(19) and
substituting E(b;) — by from the first term in Eq(15)
into Eq(19), gives :

o2  (M-1)° Sel? 1 2
di =~ ﬁ + 1 |AZka lbkl

The optimal number My, is found by deriving dj with
respect to M and equating the derivative to zero :

ady, 0',21, M-1 Su 2 2
53~ p t o |AZ | Il
Mkopt - 3 (20)

Note that in Eq(20) if AZ; = 0 (when poles are
exactly known), then M, — +oo in order to reduce
the noise effects on the solution Ek. Of course, each Ek

leads to a different M} Hence, a number M,;; has

P
to be chosen, such that it minimizes MSE d = 1—11 3

k=1
dr. , deriving d with respect to M and equating the

derivative to zero yield :

opt*

202

1 b 2 ~ 12
p 2 [ok]" |AZkZ]
k=1

Mopt = (2 1)

3
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5. SIMULATION RESULTS

To illustrate these theoretical results, let us consider an
example of a signal z(n) = cos(0.6n) + 0.5cos(n + 1)
and 02 = 0.4 (SNR ~4.5dB) for a modeling order
p = 10. The results are summarized in the following
table :

w =—ws =06 b =05

True a; =ag=0 by = 0.5
parameters wy3=—wyg=1 by =0.25¢7
o3 =ag=0 by = 0.25¢7

@1 = — = 0.5993
Estimated &1 = 6 = —9.4643.10~*

parameters W3 = —w4 = 1.0035
O3 = @4 = —0.0073

Optimal My, = My, = 132

number M M3°f" = M4°P‘ =58
Mopt = 72

Fig. 1 and 2 present the modulus and phase behav-
ior of E(b1) as a function of M, using Eq(6) and the
approximation given by Eq(15).

0.33 =

0.351

10 45 °0 113

approximation to

Phase((5)))

0,08 —foeenieennnnnns [rovesasemmmesse T

Fig. 2. Phase of E\.,, i
These figures illustrate the approximation quality of
Eq(15) and hilight the increasing behavior of E(b;)
as a function of the Van der Monde equation
number M. N N
Fig. 3 presents variances of b; and b3, as a function
of M, according to Eq(7).
In Fig. 4 MSE d;,d; and d are ploted versus the

equation number M. The minima observed in this fig-
ure correspond to the values derived from Eq(20) and

Eq(21).

1077 . M
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Fig. 4. Quadratic errors d1, d2 and d v.s. M
6. CONCLUSION

It is widely admitted that the reduction of the noise
effect on the Van der Monde solution leads to a choice
of M as large as possible. One of the main results
of our analysis is that, surprisingly, there exists
an optimal number of equations M.
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