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ABSTRACT

The problem of period uncertainty when evaluating
spectrum estimates for wide sense cyclostationary processes
is addressed in this paper. In particular, the extended
Kalman filter (EKF) and a parallel bank of Kalman filters
are investigated as different methods for adaptive estimation
of a time-varying period. An example is given concerning an
AR(1) process and a number of time-varying periods are
adaptively tracked for different periodic functions.
Convergence characteristics are also assessed. Finally, a
combined detection-estimation approach is also
investigated.

1. INTRODUCTION

This work is concerned with addressing the problems
associated with period uncertainty when evaluating
spectrum estimates for a class of periodic random processes
known as wide sense cyclostationary (wsc) processes. Such
processes can be found in a variety of disciplines ranging
from rotating machinery to electrical communications. The
influence of period uncertainty has previously been
investigated in [1} and [2], providing the motivation for
consideration of adaptive tracking algorithms for period
estimation. By tracking a time-varying period, it may be
possible to improve the estimate of the spectra density of a
wsc process. Previous research [3] compares means of
parameter estimation for non-stationary processes but only
offers heuristic advice concerning the methods considered
and the rate of convergence to the true parametric values.
Period estimation is not considered. This paper investigates
the use of the extended Kalman filter (EKF) [1],{4], for
adaptive period estimation. An alternative method is also
studied whereby a bank of parallel Kalman filters are
employed (sometimes known as the Magill filter [5] or the
multiple model approach (6]), each tuned to a particular
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period. Detection theory is then used to identify the true
period. Convergence properties are available for this form
of estimation [6] via parallel processing. Results are
presented which compare the thresholding properties of
both these methods to assess convergence performance,
Time-varying periods are then adaptively tracked for a
number of different periodic functions. A combined
detection-estimation approach is also investigated.
Detection is performed via the Magill filter determining the
right local region of the period and utilising the filter's
convergence properties. The EKF is then employed to fine
tune the period estimate by adaptively tracking the time-

varying period.
2. PROBLEM FORMULATION

A random process X, is said to be a wide sense
cyclostationary process if both its mean E(X)Ap, ()
and autocorrelation E(X, Xis) AR (1,2 +7T)  are

periodic functions of the variable t. A wsc system can then
be described as follows,

X1 =A(d)X, + B(d,)U,

Y, =CX, +W, M

where X; and U, are n-dimensional, d, and Y, are one-
dimensional, A(-) and B(:) are twice differentiable, d-
periodic matrix valued functions, and U, and W, are white

noise processes with known covariance and zero mean. For
these investigations, a scalar AR(1) process with

A(d;)=0.9+0.1cos(2rt/d,)
B(d,)=0.2sin(2nt /d,)

is simulated and adaptive tracking of the period investigated
via extended Kalman and Magill filtering.
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3. THE EXTENDED KALMAN FILTER

Adaptive estimation using extended Kalman filtering is
performed by viewing the period as an additional state of
the signal model (Eq. 1) and modelling it as a random walk
(an AE(1) process)

dry1=di +BV, 2

where V, is a white noise process with known covariance

and zero mean. Augmentation of the system in this way
gives the well-known extended Kalman filter the ability to
estimate slowly varying pérameters. The period enters non-
linearly in d; so the model, Eq. (1), together with Eq. (2) is
inherently non-linear. The EKF equations [4] are then
applied to the augmented non-linear model.

4. THE MAGILL FILTER

The Magill filter [5] is a process which assumes the
unknown period belongs to a discrete set {dj,.....dy]}, with a
known or assumed initial probability for each d. The
estimator consists of a bank of N standard Kalman filters
each using the noisy signal measurements as input. Each
Kalman filter is designed assuming a period from the discrete
set thus making the technique linear. The estimate of the
state and period is given by the weighted sum of the
estimates from each Kalman filter. The weighting coefficient
of the state of the ith Kalman filter is the a posterior
probability that d=d; and this probability is updated
recursively using the noisy signal measurements and the
state of the ith Kalman filter. More precisely, the a
posterior probability is denoted as p(d;\Y}) where Y is the
sequence of measurements from ¢ = 0 and is calculated as

p(ye\ Y,_],d,-)p(d,- \Y,_})
N

> P \Y,_1.d) p(d;\Y,_p)
i=]

pldi\Y,)= (3

The likelihood functions, p(y,\Y,_;.d;), are readily
available using the innovations and error covariances from
the Kalman filter equations. Thus, the state estimate is the
sum of the contributions from each of the filters and is
expressed as

N
Ep-1= 2 Xpn-14P(d\Y,). (4)

i=1

An advantage of this form of adaptive estimation is that
convergence results exist for the stationary case. It is
shown in {7] that if the true parameter values lies within the

discrete set, the corresponding a posteriori probability
converges exponentially to 1.

For the situation where the unknown parameter is, in fact,
time varying, various modifications to this parallel
processing scheme are available. One approach requires
reinitialisation which effectively throws away old data.
Any p(d;\Y}) which are zero are set to a nonzero value.
The states in the bank of Kalman filters are also reset to the
current state estimate. The frequency of reset should be
related to the temporal structure of the unknown
parameters.

5. SIMULATIONS AND RESULTS

Before adaptive tracking of the period of the wsc process
described in Section 2 is considered, convergence properties
are first investigated. A Magill filter and an extended
Kalman filter were applied to the system. Supposed, =d =

50 and 6% =% =1. The extended Kalman filter of Section

3has B= 1x107° (Eq. 2) and an initial error covariance of

L0 0.5
Zo/-1= [0 5 1 0}. The Magill filter consists of a bank of

5 standard Kalman filters each modelled as in Eq. 1 but with
a constant 4, taken from the discrete set {42, 46, 50, 54, 58}.

The period estimation threshold behaviour for the Magill
and extended Kalman filters, over a range of G%V, is shown

in Figure 1. The results are averaged over 100 realisations
and are for t =0,..,.9999. Initialisation in this instance is at
the correct value. However, it is noted that convergence of
the EKF can be dependent on initial assumptions of period
and error covariance and convergence properties of the EKF
are not well understood. Estimation of the period utilising
the adaptive EKF is the preferred method. However,
performance of the Magill filter is highly dependent on the
discretisation of the parameter space and the Kullback
information function [7} can be used to specify a sensible
discretisation of the parametric space. One realisation for
both the EKF and the Magill filter is shown in Figure 2 for
o%v =0.5. Clearly, the Magill filter has a faster
convergence rate than the EKF but a higher initial error due
to the choice of the parametric space.

The EKF is then used to adaptively track a time-varying
period. Three periodic functions and their associated
period tracks are shown in Figures 3,4 and 5 It is apparent
that the algorithm can adaptively track slowly time-varying
changes in periods as well as abrupt steps but over a small
range. As the period is modelled as an AR(1) process in this
instance, the performance of the filter is directly related to
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the type of autoregressive model which fits the time-varying
period. The Magill filter is also used to adaptively track a
strongly time-varying period (Figure 6). Periodic
reinitialisation assuming prior knowledge of the temporal
structure is employed with this particular filter to allow for
time-varying parameters. Performance of the Magill filter
was poor when adaptively tracking a rapidly time varying
period such as a sine or ramp.

Analysis of the Magill filter and the EKF leads naturally to
a combined detection-estimation approach. A tandem
arrangement was formulated where the Magill filter
employs the detector algorithms to determine which region of
the parameter space the true parameter lies. Once it has been
established that the right local region has been located,
initial estimates of the period and error covariance are
passed to the EKF and smaller variations in the period are
adaptively tracked. This approach is shown to be effective
in alleviating convergence problems with the EKF due to
_poor initialisation and reduces the mean square error as the
system settles. The asymptotic steady state errors remain
unchanged. Improvement in threshold performance for
estimation of period for this tandem arrangement is
illustrated in Figure 7.

6. CONCLUSION

The goal of this work was to investigate the potential of the
extended Kalman filter and the Magill filter for adaptive
estimation of period for cyclostationary processes.
Convergence of both filters has been investigated for the
AR(1) process described earlier. The extended Kalman filter
exhibits good thresholding behaviour even at a high level of
noise in the measurement signal provided care is taken when
choosing initial conditions. The Magill filter is shown to be
more robust but performance is lost as a result of the
discretisation of the parametric space. For the process
considered, the extended Kalman filter is an effective means
of tracking a time-varying period. In comparison, the Magill
filter can also yield good estimates of period but the method
does require some prior knowledge with regards to the
temporal structure of the period. Finally, it is possible to
obtain significant performance benefits by combining a
Magill filter with an extended Kalman filter to accommodate
for poor initialisation. Thus, it is fair to suggest that the
adaptive methods discussed here for period estimation could
be incorporated into the estimation of time-varying spectra
for wide sense cyclostationary processes.
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