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ABSTRACT

A method of jointly estimating the parameters of a number
of superimposed convolutional coded communication signals
incident on an antenna array and demodulating these signals is
presented in this paper. The method would allow simpler arrays
to be designed due to the threshold extension obtained by this
method. It also has the potential to increase the throughput of
current Multiple Access channel systems, for example, Satellite
communications and digital Mobile Cellular Phones, by using
an antenna array. The contribution of the paper is the use of
sequence estimation combined jointly with parameter
estimation in array processing problems. In the simulations it
is shown that a significant improvement in the accuracy of the
demodulated signals and in the estimation of the signals’ angle
of arrivals is obtained compared to a deterministic Maximum
Likelihood estimation method.

1. INTRODUCTION

The estimation of superimposed signals incident on an
array of sensors is not new. Traditional methods of
demodulating superimposed signals involve the use of an array
of sensors and beamforming techniques. These techniques first
obtain an estimate of the parameters of the signals, i.e.
amplitudes (p), phases () and angle of arrivals (AOAs), and
then using these parameter estimates extracts each signal from
the received observations, before demodulating each signal
separately (see Figure 1). Expectation-Maximisation (EM)
algorithms have been applied to this type of problem
previously. Feder and Weinstein [1] introduced the use of the
EM algorithm for direction finding. Miller and Fubhrmann [2]
derived EM algorithms for the Maximum Likelihood (ML)
estimation of the direction of arrivals of multiple narrow-band
signals in noise, under both the deterministic and stochastic
signal models. Ziskind and Hertz [3] derived an EM algorithm
for Auto-Regressive (AR) processes. Malcolm and White [4]
extend Ziskind and Hertz’s EM algorithm for general linear
Gaussian Markov processes by refining the E-step. Knowledge
of the signals characteristics has also been used to improve the
estimates [5], [6]. Jointly estimating the parameters and
demodulating the signals using knowledge of the structure of
the signals has only recently been applied [7], [8].

This paper investigates the sequence estimation problem of
signals modelled as Markov sequences. These Markov
sequences (convolutional coded signals [9]) have strongly
constrained state sequences and therefore the estimation
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procedure should yield valid path constrained sequences.
Knowledge of the signals’ models is assumed (each signal is
convolutional coded with known constraint length and
generating polynomials) in order to estimate their maximum a
posteriori probability (MAP) state sequences. These sequences
are then used in estimating the signals’ parameters.

The method used in this paper for jointly demodulating the
signals and estimating their parameters is based on the iterative
two step Segmental K-Means Algorithm (SKMA) [10]. The first
step (segmentation step) uses Hidden Markov Model (HMM)
methods [11] (leading to the well-known Viterbi algorithm
{11]) to estimate the MAP state sequences of the convolutional
coded signals. The second step (optimisation step) uses the
estimated MAP state sequences to estimate the signals’
parameters by maximising the state-optimised log likelihood
function with respect to the parameters. A suboptimal method
for decreasing the computational complexity of this problem
and hence the processing time is also described.

The method described in this paper is shown to improve the
demodulation of the signals as well as improve the accuracy in
estimating the AOAs, when compared to a deterministic ML
estimation method [12] for signals that are closely spaced.
This improvement is shown to be significant for the examples
discussed but are achieved through an increase in the
computational complexity of the problem. Monte Carlo
simulations are used to demonstrate the results and
improvements obtained.

2. SIGNAL MODEL AND PROBLEM FORMULATION

Let the message sequence b(t),t20 denote a first order
Markov process with transition probabilities a;, being the
probability of transition to state j from state i (for b(t) an

independently and identically distributed (i.i.d.) equiprobable
binary process, a; = 0.5). This sequence is convolutional

coded with a constraint length N and rate 3%, where Q message
bits are produced for every n coded bits. This code is used to

select one of M = 22 possible phase signalling values. For a
convolutional coded signal the transmitted phase is given by:

o) =223 2" 3 b(t-1)G, (n) <1)

where G,(n) are known binary co-efficients of the
convolutional code’s generating polynomials.
s(t)=[b(t),b(t—1),...,b(t—N+1)] is a first order Markov

process that has F=2" states with transition probabilities:

1788



Pr{s(t) =[<(0).....c(N=1)]|s(t-1) =[a(0)....a(N-1)]}

={adwo) d(t-1-i)=c(t-i), 0<isN-1 @
0 else.

We shall restrict attention to the uniform i.i.d. message
case. Each s(t) corresponds to a certain ¢(t) hence the
transmitted signal is modelled by

z(t)=x(t)+iy(t) with x(t)= poos(¢(t)+ \v)+ w(t)
y(t)=psin(¢(t)+\y)+ v(t)
where the amplitude (p) and phase () are slowly varying wrt
time and are considered constant for some block length T,
w(t), v(t) are i.i.d. white Gaussian noise (WGN) processes with

zero mean and variance o7,
Consider L. superimposed signals each generated as
described above by Egs. (1) to (3), except that the message

sequences, {b“)(t)} 1<¢<L, are generated independently, the
eq

generating polynomials Gf:)(n) for each signal may be

different, and that these signals are incident on a uniform linear
array (ULA) of K sensors. The standard baseband model of the
K-vector array outputs is:

U(t)=A(Q) Z(t)+N(t) @
for t=0,...,T-1, and where A(Q) is the so-called steering

matrix that depends on the arrival angles Q={<p('),6“),cp(2),

2 (y)]

(where @, 81 refer to the elevation and azimuth of signal

6(2’,...,(9(”,9“‘)} of the signals Z(t)=[z")(t),z(2)(t),...,

z(t) respectively), together with the array geometry. N(t) is
an i.i.d. WGN process with covariance matrix R(t)=0’I. The
problem of interest here is to estimate the amplitudes (p(')),
phases (\v(') ), arrival angles ((p('),O(‘)) and the message
sequences {b")(t)}, 1<£<L from the observed data sequence

{vw}.

3. DEMODULATION OF THE SIGNALS AND
ESTIMATION OF PARAMETERS

The observed signal model for the L superimposed signals
is given by Eq. (4). For optimal demodulation, these L signals
can be considered to be equivalent to a first order Markov

process with F" states given by:
$()=[s"(t)s2(),....sM ()] =[ b9 (1), bO (2 -1)....,
b“’(t-N+1),b"’(t),b"’(t-l),...,b‘z’(t—N+1), )

2 bP(1),69(t-1),...,b0(t-N+1)]
with transition probabilities:
Pr{S(t) =[c®(0),....c®(N-1),c®(0}... c®(0),

e®(N-1)]|8(t-1)=[d®(0).....d"(N~1),d®(0),...,
d?(N-1),...,d°(0),....d”(N-1)]}

CD(N=1),...,

={gd‘,,(o)cm(o) d®(k)=c®(k+1); 0Sk<SN-1; 1S¢<L ©)

else.
where 3 400 (0) =0.5" when the L input message sequences
{b9(t)} are binary & i.id.
The SKMA is used to demodulate the signals and estimate

their parameters. The segmentation step estimates the ith
iterative MAP state sequence of the signals,

{é,(t)}=§,(o) 8,(T~1)= argmax Pr{S(0),..., S(T-1)|

Q)]
U(o),..., U(T—l);P,.‘l’i,Q,}

length T and ith estimates
W {a)wm ,ng and

*!L)’éo-)}.

The sequence {§,(t)} is estimated as if it is one signal that

has F" states, using the Viterbi algorithm. From Eq. (5), the L
estimated MAP state sequences {§f‘)(t)} and hence the L

for some block
B= (305050},

0, ={50,80.60.60....,

demodulated message sequences bt , 1S{<L are then
i

obtained.
To improve the demodulation of the signals updated

estimates of the signals’ parameters (ﬁ,*,,‘i“,,,,flm) are
determined to maximise the state-optimised log likelihood
function:

(P,,A,‘PM,QM)—argmax{log Pr{{U(t }I P ¥, Q}} ®)
For convolutional coded plane wave s1gnals, Eq. (8) is
written as follows, with Q replaced by the signals’ azimuth
angles @):{ém,ém,...,é(")} and U(t) written in quadrature
baseband form, u(t,k)=x(t,k)+iy(t,k) for each sensor, k.
(P ‘P“,,G),ﬂ)zarg.%ax{—Tlog(c 21t)—

i+

1 T-1 K-t L N 2
= —3 (x(t,k)—Zp") cos(¢f’)(t)+\y(” +k0)(’)))
=0 k=0 =1

=1

+(y(t,k)-ip<‘> sin(6{7 () + +km“’)) H ©)

where §{" (t) is defined in Eq. (1), 0/ = 2:d cos(e(‘)) d is the

spacing between sensors and A is the signal wavelength.
There is no closed form solution to Eq. (9). Thus,
numerical techniques [13] can be used to determine the values of

PM,‘I‘Ml and E-),,,I which maximise Eq. (9). Also a
L-dimensional grid search could be applied. Both of these
methods are computationally very intensive.

In order to reduce the computauonal load in estlmatmg the
signals’ parameters, Eq. (9) is suboptimally solved using Feder
and Weinstein’s EM algorithm for deterministic signals [1].
The EM algorithm for this problem is summarised below.

For each signal ¢, 1<¢<L

E-step: For each sensor k, 0<k<K-1
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. A (0 i(#HOW+vid el & a ey, (i e emaf)
60(t.k) =p(e )+B"’[U(t,k)-29£3e‘( Y *)]
=l
(10)
M-step:
A0 A0 AO -1 S (s
(pi.mn‘l’x.mven.w):ar%'%ax FZZ[(XLb(tak)_

t=0 k=0

peos(H7(0)+ -+ +(312(8)-psold? ) v ) |
(11

L ~
where 3 B =1, and ¢{?(t) & ©f) are similarly defined as in
=}

Eq. (9). Eq. (11) is now in an expanded form similar to Eq. (9)
L

except that the Z terms are replaced by single terms. From
=]
Eq. (11) an expression for each of the parameters can be

determined, however the éum values must still be
approximated using numerical techniques and/or grid searches

over L*HT values. ML estimates of lsu,,, and \'l\-’u»l can be

evaluated in closed form once the values of (:)u»r have been
computed. Further details can be found in [14].

The EM variant of the SKMA is a lot less computationally
intensive than an L dimensional numerical technique or an
L-dimensional search involving approximately H“/L values.
After a convergence criterion is satisfied the parameters

[lsm,‘i’m,(:)m]=[13w,,‘i’w,,(:)m] are used in the next

segmentation step.

The SKMA method and its suboptimal variant (denoted by
SKMA-EM) are compared with the deterministic ML estimation
method for the narrow-band problem as described by Hurt [12]
and depicted in Figure 1.

4. SIMULATIONS AND RESULTS

Two signals are simulated to be incident on a ULA of 5
sensors spaced one-half wavelength. These signals are assumed
to be convolutional coded quadriphase shift keyed (QPSK) with
constraint length 7, rate %. The generating polynomials are
those found by Odenwalder as described in Sklar [9]. These two
plane wave signals have a block length of 300 bits, p=1.0 and

¥ =0.0 and are incident on the array at 23° and 28° from

endfire. The signals have different in-dependent input message
sequences. The results are calculated for 300 realisations per
SNR¥/SENSOR value for each of the methods, a deterministic
ML scheme, the SKMA and SKMA-EM schemes. The initial
estimate of the AOA for each signal was randomly chosen in the
range 13° to 38° and the ML search was also constrained to this
region. The search grid was spaced 0.2° with H=126 values.
The signals’ amplitudes and phases are assumed known.

Figure 2 shows the RMS error of estimating the AOA for
the two signal case using the three methods. The SKMA and
the SKMA-EM methods are shown to be significantly more
accurate at estimating the AOAs when compared to the

T H is the number of values in 2 given search region for each signal.
¥ Signal to Noise Ratio = 10 log,o(p?/?)

deterministic ML method particularly at low SNR. It is also
noted that there is little different between the accuracy of the
SKMA and the SKMA-EM methods. However the SKMA-EM
method is significantly less computationally intensive than the
SKMA method.

The two signals are defined as being resolvable [15] if both
signals’ AOA estimates satisfy the condition:

. (1) (2)
Ie(z) _ e(l)l < L;_e__, =12

8 is the true AOA for signal £,

8 is the estimated AOA for signal £.

Figure 3 shows the probability of resolving the signals.
The signal resolution is far superior for the SKMA and SKMA-
EM methods compared to the ML method at the SNR values
shown, with no difference between the SKMA and SKMA-EM
methods.

Figure 4 shows the average BER for the two signals as
determined using the three methods. The BERs obtained using
SKMA and SKMA-EM methods are almost identical. These two
methods show a remarkable threshold extension (~20dB) over
the deterministic ML method.

where

5. CONCLUSION

In this paper we have presented a method (using Juang and
Rabiner’s segmental k-means algorithm [10]) for spatial
filtering of superimposed convolutional coded QPSK signals.
This method was compared with a deterministic ML scheme
[12). For the examples discussed, we have shown that this
method is significantly more accurate in its demodulation of the
signals and in the estimation of the AOAs, particularly at low
SNR. However, this improvement is achieved through an
increase in the computational complexity of the problem and
hence the processing time for obtaining solutions is also
increased. The paper also described a means of reducing the
computational complexity in the parameter estimation section
of the SKMA method (using Feder and Weinstein’s EM
algorithm for deterministic signals [1]). This suboptimal
method (SKMA-EM) significantly reduced the computational
complexity involved in estimating the parameters without any
significant loss of performance in the demodulation of the
signals or in the estimation of the AOAs. The improved
accuracy of the SKMA and SKMA-EM methods provide a
remarkable threshold extension, ~20dB, compared to the
deterministic ML scheme.
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Figure 1: ML scheme for AOA estimation and
demodulation for two signals.
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