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ABSTRACT

In this paper we approximate arbitrary complex
signals by modeling both the logarithm of the ampli-
tude and the phase of the complex signal as finite-order
polynomials in time. We refer to a signal of this type
as an Exponential Polynomial Signal (EPS). We pro-
pose an algorithm to estimate any desired coefficient for
this signal model. We also show how the mean-squared
error of the estimate can be determined by using a first-
order perturbation analysis. A Monte Carlo simulation
is used to verify the validity of the perturbation analy-
sis. The performance of the algorithm is illustrated by
comparing the mean-squared error of the estimate to
the Cramer-Rao bound for a particular example.

1. INTRODUCTION

It is well-known that an arbitrary complex signal
can be represented by its magnitude and phase. In this
paper we model complex signals by approximating the
phase of the signal as a finite-order Taylor expansion
in time. Further, we model the logarithm of the time-
varying amplitude of the signal as a finite-order Taylor
expansion as well. The types of signals that we con-
sider in this paper arise in various applications such as
geophysical phenomena [1] and speech processing [2].

In this paper, we consider observing a complex sig-
nal, s,, in circular additive white Gaussian noise, w;,.
That is, suppose we observe

Yn = 8p + Wy, (1)
where n ranges from 1,2, ..., N. The signal, s,,, is mod-
eled as being an EPS. Specifically,

n? nM
Sn = exp (ao +ain+ azg + o+ GMF) , (2)
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where the coefficients of this Taylor expansion are un-
known complex parameters. The real parts of the co-
efficients specify the envelope of the signal, while the
imaginary parts of the coefficients specify the phase of
the signal.

In a recent paper [3], the authors presented a new
method to estimate the highest-order coefficient, ayy,
from the noisy observation, y,. In [3], it was also shown
that this new algorithm is related to an algorithm pre-
sented by Peleg [4] to estimate constant-amplitude poly-
nomial phase signals. In this paper, we extend the con-
cepts of [3] to determine an estimate for an arbitrary
coefficient ap by the means of analytically solving an
optimization problem that depends only upon the ob-
servation and the desired coefficient. We also give a
method to determine the mean-squared error of our es-
timate for a; by using a first-order perturbation analy-
sis. Some of the results in this paper are stated and not
proved. The reader is directed to [5] for the detailed
proofs.

2. ESTIMATION ALGORITHM

In order to determine a closed form expression for
ai, we consider taking the kth finite-difference of the
logarithm of both sides of Eq. (2). The resulting equal-
ity is expressed as

M
VTk VTk-1 o 'v‘fx In Sn = Z a,'Z,I:/i, (3)
i=k

where the finite-difference is defined by V,f, = fu —
frn—r. The function z,’:/' is defined as

kfi __
2=V, Vo

The kth finite-difference of the logarithm of s, can
be determined recursively. Specifically,
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where the recursions are

gn (7m) = g0 (Ym-1)AZE (Ym-1) (5)

ha'(m) = B3~ (Ym=1)9n 7, (Ym=1)-  (6)

These recursions are initialized by choosing g3(1) = s,,,
and A%(1) = 1. The recursive equations are applied k
times, by setting m tom = 1,2,--. k. The function y;
represents the product of the delay parameters. That
is, v« = 7172 - Tk. Note that the functions g7 (ym)
and A'(ym) depend upon all of the delay parameters
individually rather than the product of the delay pa-
rameters as suggested by the argument of the function.

From Eq. (3), we note that the finite-differencing
has eliminated the dependence on the parameters from
ao to ag—,. That is, this equation depends upon only
M — k + 1 complex signal parameters. To determine a
system of equations that is a function of these parame-
ters we take the k, k + 1,.-., M finite-difference of the
logarithm of the signal. By equating Egs. (3) and (4),
we state these equations as

M
97 (m) = [T exp (2™ B2 (ym) =0 (1)
i=m
form=kk+1,.--, M.
By solving this system of equations, we determine
that the coefficient aj satisfies

g% (1) — exp(ar e )h*™ (1) = 0. (8)

The superscripts k/M is used to denote that we are
estimating a; when the order of the polynomial of the
signal is M. The functions in Eq. (8) are determined
recursively by

M . .
g (m) = g (om) _® WM (27NY)

M . .
W2 () = BT (1) & 6" (52F)

These equations are evaluated successively by letting
m=M-1,M-2,.-. k. Therecursion is initialized by
noting that ¢M/M(yar) = g™ (yar) and hM/M (vyr) =
hM(yp). The symbol ® is used to denote the Kro-
necker product. In general, the functions gy / M(-ym)
and h/ M('rm) are column vectors for each n. Larger
dimensional column vectors, g™/™ (v,,) and h™/M (4,,),
are obtained by stacking each of the smaller dimen-
sional column vectors.

We obtain the least squares estimate of a; by re-
placing the noise-free signal with the observation in Eq.
(8) and minimizing the sum of the squares of the errors.
That is,

min “é"’M('rk) - exp(ak*nc)7l’°/M(7k)”2 )

where we have used a bar over the vector to represent
that the vector depends upon the observation rather
than the noise-free signal. By analytically solving Eq.
(9), we determine that the least squares estimate for
aj is expressed as

kM
r = In ()
e vEIM(y)

(10)

where

() = (BM() M) (1)

- 2
M () = [B4 ()| (12)
By using some well-known properties of the Kronecker

product [6], we express a recursion for computing the
quantities in Eqs. (11) and (12). That is,

M
M (ve) = Y Rk () ga(ne) T rmM ke

m=k+1
(13)
9 M
M) =3 lakew)|” TI ™™k 9
n m=k+1

. M
* M) = SO REG)|” T v M) (15)

n m=k+1

Note that the scalar functions of Egs. (13-15) do not
have to be recalculated for estimating each signal pa-
rameter.

An alternative estimation algorithm can be obtained
by first dividing Eq. (8) by exp(axvx) before replac-
ing the signal with the observation and minimizing the
norm of the error. We refer to the estimate obtained
in this fashion as the backwards least squares estimate.
This estimate is given by

E/M
ax = —In W)
Te o rEM ()
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3. STATISTICAL ANALYSIS

In this section, we derive an approximation for the
variance for the estimate of the coefficient a; by us-
ing a first-order perturbation analysis. That is, we ex-
pand the estimate & in a first-order Taylor expansion
about the noise-free signal and then use this expansion
to compute the variance. A similar method could be
used to derive the bias of the estimate by making use
of a second-order Taylor expansion.

Since the estimate &; is a-function of both the
observation and the conjugate of the observation, we
expand about both the noise-free signal and its con-
jugate. However, it can be shown that the derivative
of dr with respect to the conjugate of the observation
evaluated when the observation is equal to the true sig-
nal is identically zero. Therefore, we can express the
first-order Taylor expansion of the estimate as

w;. (16)

y=s

ak=ak+z 6y.

The variance of the complex estimate would then
be given by

.2
Ody

o (1n

N
var(ag) = o Z

The variances for either the rea.l or imaginary part of
the estimate would be equal to each other and equal to
one half of the variance of the complex estimate that
is given in Eq. (17).

The derivative is determined by differentiating Eq.
(10), that is

R ork/Mim) M M(yy)"
60& — 1 Sy, dy. ) (18)

y=s

i o \HM(n) T M (y)

The derivatives stated in Eq. (18) can be computed
recursively using four equations. Specifically, we differ-
entiate Eqs. (13-15) and the conjugate of Eq. (13) with
respect to the observation. For example, the derivative
of Eq. (13) is

ark/M 46 n rm
o (7k) th(_y ) g (7’5) H /M(zk/m)
Oy; m=k+1
M E/1
. orliM /
+th(7k) gnlne) Y r—(z‘—)
I=k+1 Oy;
M
H rm/M(z'I:/m)*.
m=k+1
m#£l

We will also be needing the derivatives of Egs. (5)
and (6). Although these derivatives can be obtained
by differentiating their recursive definitions, we find
it beneficial to differentiate closed-form expressions of
these functions. Specifically, we express these functions
as products of delayed versions of the signal. That is,

L
g:('ﬂ:) = H sﬂ_am

m=1
L
B(ve) = ] sn-pnm
m=1
where L = 251, The vectors o* =[a; --- ar]and

Bt = [A Br] are determined recursively from
the delay parameters. That is,

a™ = [am—l ﬁm—1+rm]
m:[ﬂm—l am—1+rm],
where the recursion is initialized by choosing a! = 0

and B! = 1. The derivatives of g*(yz) and h*(y;) are
stated as

k .
8‘(}62") = %A’yk(vk) (19)
6hk(7k) i

T B 'hE (1e ). (20)

where A® and B’ are dlagonal matrices. Specifically,
the diagonal elements of these matrices are

L
= Z 6n—ak—i
k=1
L
S
k=1

Thus, we have presented a method to determine
the variance for an arbitrary coefficient ;. For ex-
ample, we use this procedure to determine that the
variance of the highest-order coeficient, ayr, is

A Y [ g (45— B) )2
var(ay) = o? Z (hH—-——Zh . (21)

iz \ s lsid |[Al]

Similarly, we can derive the bias for aps as

N pH( A i H
s h (A2 Bg (I_hhz)B,h
= v sl |R]) Al
(22)
In Egs. (21) and (22), we represent A™ (v5) by h.

bias(dy) = o

1786



An important observation from Eqgs. (21) and (22)
is that the bias and the variance of @) depends only
upon the amplitude of the signal (the real parts of the
signal parameters) and not the phase of the signal (the
imaginary parts of the signal parameters). Also note
that from Eq. (22), the bias of @as is purely real. That
is, by using a second-order Taylor expansion of the es-
timate, we deduce that the highest-order phase coeffi-
cient is unbiased. Since the mean-squared error (MSE)
is defined as the variance plus the absolute bias squared
of the estimate, we note:that any differences between
the MSE of the Re(asr) and the Im(aps) is due to the
bias of the Re(aar).

4. NUMERICAL SIMULATION

Here, we compare the MSE of the estimates ob-
tained from a Monte Carlo simulation and the pertur-
bation analysis to the Cramer-Rao lower bound (CRB)
for a particular example. A derivation for the CRB
for this model is shown in [3]. For our example, we
considered a chirp with a Gaussian envelope where the
signal parameters are given by ag = —6 + 2j, a; =
(4.8 4+ 2j) % 1072, and a; = (—2 + 4;) * 10~*. The
number of samples was chosen to be N = 500. In Fig.
1, we show the MSE for the estimate of a; versus the
second delay parameter 7 at a 20 db peak signal-to-
noise ratio. The MSE using the perturbation analysis is
compared to a Monte Carlo simulation with 1000 runs
and to the CRB. The first delay parameter was taken
to be 1, = 77. From this figure, we chose m» = 93 to
minimize the MSE. We observe from this figure that
at low signal-to-noise ratios the choice of the delay pa-
rameters can have a significant effect on the bias of the
amplitude parameters.

Using 7y = 77 and 7 = 93, we estimated a3 in a
Monte Carlo simulation with 300 runs and compared
the MSE to the CRB in Fig. 2 using various signal-to-
noise ratios. Also shown in Fig. 2 is a comparison of the
MSE for a; to the CRB. For the estimation of a;, we
used the backwards least squares estimate and a delay
parameter of 7, = 60. Numerical simulations suggest
that the bias of the estimate is reduced by using the
backwards least squares estimate when the real part of
the unknown coefficient is positive.

The results shown in these figures illustrate that
the MSE for the estimates came close to achieving the
CRB at high signal-to-noise ratios for a particular ex-
ample. Also note that the Monte Carlo simulations

confirm the validity of the perturbation analysis.
MSE of a2
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Fig. 1. Monte Carlo simulation: Re(a2) & () and Im(az2) &

(0). Perturbation analysis: Re(az) & (——) and Im{az) &
(—-)- CRB: Re(az) and Im(az) represented by solid line.
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Fig. 2. The MSE for a; and a2 are compared to the CRB
(solid lines). The top curves represent a1, while the bottom
curves represent az;. Monte Carlo simulation: Re(az) & (%)
and I'm(az) & (0).
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