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ABSTRACT

In this paper we examine the effect of model mismatch when
modeling a signal consisting of multiple non-stationary si-
nusoids. The envelopes and frequencies of the components
were modeled as polynomials of low order over short inter-
vals of time and the coefficients estimated using the least-
squares error criterion. If the block length and model orders
are not properly chosen, unacceptable errors occurred in the
estimated frequency tracks. The errors tended to increase
as the number of components increased. Using the simpler
constant envelope, constant frequency sinewave model for
short, heavily overlapping blocks and smoothing the result-
ing frequency tracks gave surprisingly good results when
analyzing a long duration multicomponent signal. We con-
clude that the more complex polynomial model may not
always yield the expected increase in accuracy in signal
modeling.

1. INTRODUCTION

A number of naturally occurring and man-made signals
have components whose envelopes and frequencies vary slow-
ly with time. A typical example is voiced-speech. In this
paper we concern ourselves with signals of the form

M
s{n}= Z ai[n] exp jyn[n]
k;l Py Qu
= (Z akt au[n]) exp (j Z by ﬂkr[n]) , (1)
k=1 (=0 r=0

where the non-negative envelope a,[n] has been expressed
as a linear combination of the polynomials aw[n]; simi-
larly, 4[n] is a linear combination of Bi.[n]). The instan-
taneous frequency (IF) of the k-th component is fi[n] =
(1/27) (¥ [n] — y[n — 1)), and M is the total number of
components present. We assume that ax[n] and fi[n] are
only slowly varying so that they can be modeled quite ac-
curately by polynomials of low order over short intervals of
time. We further assume that fi[n] # fi[n] whenever k % [.
Given a signal z|n] with components that can be modeled as
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in Eq. (1), our aim is to estimate the coefficients ax; and b
by minimizing the mean squared error between the signal
and the model. Observe that Eq. (1) reduces to the con-
ventional sinewave model when the envelopes are constant
and the phases are linear.

The classical FM signal can be thought of as a mono-
component polynomial phase signal and FM receivers can
be viewed as signal analyzers. Cahn [1] showed that the
performance of the phase-locked loop (PLL) can be im-
proved if one allows for a processing delay. Tufts and Fran-
cis [2] showed that searching locally for peaks in the discrete
Fourier transform of short, heavily overlapping blocks is a
MAP estimator for the local frequency. For single compo-
nent signals, these procedures yield good results. Recently,
analysis of multicomponent signals has attracted a lot of at-
tention. Kumaresan and Verma (3] and Liang and Arun [4]
used rank reduction methods to get the parameters of chirp
signals. Djuri¢ and Kay (5] modeled the phase as a poly-
nomial and estimated its parameters using a least-squares
procedure. Peleg and his collaborators [6, and the refer-
ences therein] introduced the Discrete Polynomial Trans-
form to compute the parameters of single and multicompo-
nent polynomial phase signals. In [7] Boashash has reviewed
a number of instantaneous frequency estimation methods,
including polynomial phase modeling. The most general
polynomial envelope and phase model given in Eq. (1) was
proposed, independently of the work in [8], by Friedlan-
der and Francos [9]. They give details of the maximum-
likelihood estimator of the polynomial coefficients and also
derive relevant Cramér-Rao lower bounds.

Our main concern is not so much the study of the least-
squares estimator’s performance as the examination of the
effects of model mismatch on the estimated frequency tracks.
The motivation to examine such effects was provided by the
difficulties we faced when modeling natural voiced speech.
Except in the case of certain computer generated signals,
model mismatch cannot be avoided. A simple example
demonstrates that choosing inappropriate block sizes and
model orders can result in unacceptable errors in the fre-
quency tracks of the components. In contrast, smooth-
ing the frequency tracks obtained from fitting the simpler
constant envelope, constant frequency sinewave model gave
surprisingly good results when analyzing a a long duration
signal. But the heavy overlap can lead to excessive compu-
tation. We have proposed alternative methods [10-12] that
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use the smoothed IFs of the components; they incorporate
Costas’s principle of Residual Signal Analysis (RSA) [13].
Riedel [14] uses similar ideas, but computes the IF through
kernel estimators.

2. ESTIMATING THE MODEL PARAMETERS

In Eq. (1) the only unknowns are the envelope and phase

polynomial coefficients {as} and {bi,}; we have to choose
them so as to minimize F = Z:.—._ol |s[n] - z[n]|>. The co-

efficients should be constrained to be real-valued.

The following definitions lead to succinct expressions:
The Hadamard product * *’ of two m x n matrices A and B
is defined as the element-by-element multiplication of their
corresponding entries [15]. Let

§ = (s[0] sf1] --- s[N =17
(=0} =[] -+ =[N —1])T
(oxt]0] age1] -+ ar[N = 1])T
B = (Bul0] Bull] --- BulN - 1])T

Q
Y, = Zbkr Ber
=0

»
]

Q
-
]

W, = [ako*eﬂp" akl*ej"/”‘---akph*ejwh]
W = (W, W; .- Wy)

ar = (akoar -+ axp, )’

a = (a?a}r---a}:,)T

bi = (beobu --- brg,)”

b = (Tl ... L))" . @)

Using the above definitions, the error £ can be written
o~ - 2 .

as E = ”Wa— x” . Because the coefficients have to be

real-valued, E is written in a slightly modified form before

minimization. Let

[ Re {W
v = ]
 Re (3
x = Im%gi] !

_ [ Re(®
=T | m{s} | ¢
where Re{-} and Im{:} denote the real and imaginary parts.

If the following error function is minimized, then we can be
assured that the coefficients will be real-valued:

E=|Wa-x|} . (3)

The problem of finding a and b that minimize E is
well known [16]; the expression for E can be written such
that it depends explicitly on b only. Unfortunately, this
dependence is nonlinear and finding the global minimum
of E is, in general, very difficult. The usual procedure is
to conduct a coarse search in the parameter space to get a
good initial guess and then use a gradient descent algorithm
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to reach the nearest minimum, which will be the global
minimum only if the initial guess is good. The dimension
of the error surface F is Z:':l Qr; the difficulty of finding
its global minimum and the computational complexity grow
rapidly with increasing dimension.

3. SIMULATION RESULTS

We investigated model mismatch by comsidering examples
containing up to three components. The envelope and fre-
quency of each component are polynomials of degree two
or less. We deliberately introduced model mismatch and
examined whether or not the errors are within acceptable
limits. More detailed results can be found in [8].

In Example 3.1, the envelope and frequency tracks were
such that they were a linear combination of the same set
of polynomials. In particular, the Gram polynomials [17]
px[n] were chosen because of their good numerical proper-
ties. The space of the phase functions ¥, is spanned by
po[n] and the cumulative sums of po[n], p1[n],.... In the
figures that follow, the frequency tracks—rather than the
phase tracks—are plotted. The sampling frequency in these
examples was 16 kHz.

Example 3.1 Three Components: Quadratic Fre-
quency, Linear Envelope Model. A signal containing
three components was generated. The envelopes of all three
components were quadratic and identical. The frequency
tracks of the first two components were quadratic while the
third was linear. They were nominally harmonic and spaced
approximately 250 Hz apart. The signal was 289 samples
long (= 18 ms). Over the first 145 samples, each component
was modeled by a quadratic frequency and linear envelope.
The gradient descent algorithm was initialized at the true
parameter values. The estimated frequency tracks are the
solid lines shown in Figures 1{a)—1(c). The dashed lines
represent the true frequency tracks. The maximum error
in the frequency track of the second component is nearly
50 Hz. The estimated envelope tracks are shown in Fig-
ure 1(d); the thick line represents the true value, while the
others are the estimates.

Example 3.2 Constant Envelope, Constant Frequen-
cy Modeling of Nonstationary Sinusoids. To see if the
constant envelope, constant frequency model could be used
successfully to analyze nonstationary components, we gen-
erated a 235 ms long signal containing four nominally har-
monic components with varying frequency; the envelopes
were also time-varying. Blocks of 145 samples were modeled
by four sinewaves of constant envelope and frequency; the
estimated parameters were assigned to the middle sample;
the overlap between the blocks was 144 samples. The un-
smoothed frequency track of the third component is shown
in Figure 2(a); the result of smoothing it by an FIR low-
pass filter is shown in Figure 2(b). It agrees remarkably
well with the true frequency track.

4. DISCUSSION

When the signal contained only one component, model mis-
match in either envelope or phase (or both) resulted in
tracks that matched closely with the least-squares fit to the



true tracks. However, when there are two or more compo-
nents and incorrect model orders are specified, there can be
significant errors in the estimated frequency tracks, as illus-
trated in Example 3.1. There, choosing wrong orders for the
envelopes of the two components resulted in a maximum er-
ror of nearly 50 Hz in the estimated frequency tracks. When
the block size was increased to 289, the errors due to model
mismatch decreased; the maximum error in the frequency
tracks obtained by initializing the gradient descent algo-
rithm at the true parameter values was about 6 Hz. These
errors can be expected to increase as the number of com-
ponents increases. In general, the difficulty of finding the
global minimum quickly grows with dimensionality of the
error surface.

When the frequency spacing between the components
was increased, the errors in the estimated tracks caused by
wrong model orders, not surprisingly, tended to decrease.
Another property of polynomial envelope and phase model-
ing that seems to be true based on simulation experiments
is that choosing wrong orders for the envelopes has a more
severe effect on the estimated frequency tracks than vice-
versa. We modeled the signal in Example 3.1 by compo-
nents that had quadratic envelopes—the correct order—
while providing only linear frequencies for the first two
components (their true tracks being quadratic); the third
component’s true and assigned orders matched; the block
size was 145 samples. In this case the estimated frequency
tracks almost coincided with tracks obtained as least-squares
fit to the true ones, despite the three components being
closely spaced. This is in sharp contrast with the 50 Hz
or so maximum error in the second component’s estimated
frequency track when there was a mismatch in the model
order for the envelope.

Modeling short blocks of data as constant envelope, con-
stant frequency sinewaves and estimating their parameters
does surprisingly well. The block size is not that criti-
cal a parameter in this approach. The idea is to overlap
the blocks heavily and assign the estimates to the middle
sample, similar to that proposed in {2] for one component.
However, when there are many components, the estimated
frequency tracks are quite noisy; smoothing them appro-
priately gives tracks that are quite close to the true ones.
In contrast, unacceptable errors might still result due to
model mismatch when using the more sophisticated poly-
nomial model. One has to choose the proper block size,
an accurate model, and have good initial guesses to reach
the global minimum for each block. Our simulations in-
dicate that polynomial modeling need not always give the
increased accuracy that one expects from the more complex
model.

5. CONCLUSIONS

The main point that is made by the examples in this paper
is that the more sophisticated polynomial model does not
automatically give the increased accuracy expected of it. It
is rather sensitive to model mismatch; proper block sizes
have to be chosen and good initial guesses are required to
reach the global minimum for each block. Otherwise, sig-
nificant errors can result. If there is noise, the situation can
be expected to get only worse. In contrast, the simpler con-

stant envelope, constant frequency model with appropriate
post-processing gives good results.
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Figure 1: The signal contained three components with iden-
tical envelopes that were quadratic; the first two frequency
tracks were also quadratic, while the third was linear. Each
model component had linear envelope and quadratic fre-
quency. The gradient descent procedure was initialized at
the true values. (a) Estimated frequency track of the first
component (solid line); also shown is the true track (dashed-
dotted line).
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Figure 1: (b) True and estimated frequency tracks of the
second component.
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Figure 1: (c) True and estimated frequency tracks of the
third component. (d) Estimated envelopes of all three com-
ponents. The thick line represents the true envelope.
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Figure 2: (a) The unsmoothed frequency track of the third
component in Example 3.2 obtained by fitting a constant
envelope, constant frequency model over short, heavily over-
lapping blocks. The estimated parameters were assigned
to the middle sample. (b) The solid line is the result of
smoothing the track shown in {a). The dashed line repre-
sents the true track.
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