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ABSTRACT

In this paper, a new method for estimating the
frequency of a random amplitude sinusoid is proposed.
It is based upon solving Overdetermined Yule-Walker
equations using constrained least-squares techniques. A
Gauss-Newton algorithm is derived for proceeding to
the constrained minimization. Simulation results prove
the superiority of the new method over the
unconstrained method, specially for a small number of
equations.

1.INTRODUCTION

In many applications [1-4], it is known that a
multiplicative model could be more precise than the
usual additive noise model. This is the case, for
example, when train speed is to be estimated from
an on-board Doppler radar: the sum of phase and
frequency shifted echoes (due to the reflections from
different points of the track) results in a signal
whose amplitude is slowly fluctuating [1]. In the
spectral domain, instead of a single peak at the
Doppler frequency, one can observe a large
bandwith and several peaks around the Doppler
frequency. Hence, it becomes difficult to accurately
recover the frequency of interest. This phenomenom
is also encountered in radar systems with slowly-
fluctuating targets [2], in communications where the
changing reflective characteristics of the channel or
multipath trajects result in amplitude modulation
[3], and in the propagation of acoustic signals
through the ocean [4]. In a recent paper [1], we
introduced a new model (called ARCOS): the signal
was modelled as a sine wave (whose frequency,
referred to0 as the Doppler frequency, is to be
estimated) amplitude modulated by a lowpass
autoregressive (AR) process.

Due to the ARMA-like form of the spectrum, the
Doppler frequency was estimated in a two-step
procedure. First, an ARMA model was fitted to the
data (using the Overdetermined Yule-Walker
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(OYW) method). In a second step, a search for the
centroid of the set of poles was performed. This
estimator suffers from some problems:

1) it is an indirect method which does not
make full use of the a priori knowledge of the
particular form of the AR coefficients of the ARMA
spectrum

2) the Doppler frequency estimation is
coupled with that of the lowpass AR coefficients
estimation and depends on the ARMA parameters
estimates

3) we perform polynomial rooting which 1s
time consuming.

In this paper, we propose a new method
based upon constrained least-squares techniques. It
proceeds to the resolution of the OYW equations by
constraining the solution to have a particular form,

2. NOTATIONS
Consider the following ARCOS process:

x(n) = y(n).cos(nwy + Q) (1)

Here:
- ¥(n) is an autoregressive process of order
p (AR(p)) defined by

p
y(n)==>3 c,.y(n—k)+u(n)
k=1
are

@)
and {u(n)} independent and identically
distributed normal random variables N(O,Gz).

- ¢ is a random phase, uniformly
distributed on(0, 27’6], independent of y(n)

p -k A
Let C(z)= Y.z withcg=1. It s
k=0

admitted that the ARCOS in equation (1) models
signals with a slowly varying amplitude.
Under the previous hypotheses, it can be shown [1]

that x(n) is a zero mean stationary process, with



autocorrelation function and power spectral density
given by:

I, (k)iE{x(n)x(n +k)}= %ry(k).cos(kwo)
3)
A2.B(z).B"(1/z")
A(2).A"(1/2") @)
where A2 and polynomlal B(z), of degree p, depend

Sy(2)=

on {cl, +Cp,0 0)0} and where

A@= Sy 7% = Clz.e).Clz.e %)

k=0
)
An ARCOS process is therefore spectrally
equivalent to an ARMA(2p,p) with the following
main property: ®g is the centroid of the set of

(positive) angular frequencies of the zeroes of

T
A(z). For any generic vector § = (cl,..,cp,wo) .

we let g(g)=(al(Q),...,azp(Q))Tdenote the

vector that satisfies:
P
an(0)= Y cp.Cpy-cos((2k—m)wgy), m=1..2p
k=0

©)
with the convention that ¢, =0 for k [0, p].

By identifying the coefficients of z™™ in both sides
of (5), it is readily seen that a(6) corresponds to
the AR parameters of the ARMA-like spectrum of
an ARCOS process where:

-(cl,...,c are the p AR parameters of

o
the lowpass AR(p) envelope

- M) is the Doppler frequency.
As a(f) is a continuous and differentiable
function, we define the Jacobian matrix as

D(g)= A aaaée)

3. FREQUENCY ESTIMATION
Given the ARMA(2p,p) form of the spectrum, the
autocorrelation function(ACF) of x(n) satisfies the
so-called Overdetermined Yule-Walker equations
[5-81:
Ra=-r ¢))

where £=[rx(p+1),...,rx(p-i-M)]T and R is a
MI2p) matrix whose elements are
R@,j)=r,(p+i—J), i=1..M,j=1..2p. Here
M>2p denotes the number of equations in (7). We

note
N-m

I, (m)-——]— Y x(n).x(n+m)
N-m 5 (8)
the usual unbiased estimator of the ACF, from a
sample of N data points. Also, let R and
denote consistent estimates of R and r. formed by
using the sample covariances (8).

The principle of the new method is to find a

A~ 2 .
vector a that minimizes “Rg +I|| , subject to the

constraint that it has the specific form a(0)of (6).
In other terms, the ARCOS parameter vector 9 is
estimated as the minimizer of the following
criterion:

~

.ef=argmm%u@>=u§c<e>|f=||f<-a<e>+ﬂl2}
9
®

where “é” = . This is a quadratic least-squares

problem w1th a non-linear constraint. Alternadvely,
it can be viewed as a non-linear least-squares

A ¢
minimization problem. For this reason, a“ =a(6 )

and QC are said to be constrained estimates. The
minimization is performed using a Gauss-Newton
technique, the expression for the (n+1)st iteration
being:

A+ A || 9%3.(6) B 0J.(0)
Q =_Q - T .
96 08 00

Q=_é_(n)(10)
Differentiation of the cost function gives the
following expressions for the gradient and the
Hessian:

T
a8 8 (11)
PI.(8) . el (8) 9e.(9)
T=2 : T
06 08 98 06

+€."(8)..(0)

(12)



The first term of the Hessian is positive definite for
parameter vectors close to the true value. The
second term, which is proportional to the error,
tends to zero as the estimate approaches the true
value and can be neglected. This is a standard
approximation and it ensures that the Hessian
remains positive definite. By noting first that:

el (®) _2a"(0)
29 06

dJ_(8) . 0l (@) AT
o2 —p= 2 ¢ =2 D(O).RT.
30 2 £, (0).R".£.(9)

(14)
Inserting (11)-(14) in (10), the recursion becomes:

RT=D(g).RT
(13)

é(n+1) (n)

=8

{p@& DT D@8 @]

(15)
It remains to derive D(0) to complete the
derivation of the minimization. From (6), it is easily
shown that:

aaj L .

a—ci = 2.cj_i‘cos((21 - wg)

0a; p

—L ==Y (2k - j).c, Cjp.sin((2k — Hwg)
0wy k=0

(16)

where we have used the notation 6; =c;, i=1..p
and 9p+1 = wq. The previous equations (15)-(16)

describe the minimization technique. The iterative
procedure can be stopped whenever

~(n+l)

)

é(n)

é(n)

<d

7

where 8 is a user-defined threshold, fixing the
relative precision of the solution. The Doppler

A,
frequency estimate d)(c):Qc(p+l) is the (p+1)st

AC
elementof O .

NB: It should be noted that the number of
iterations needed for (15) to converge is small
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(typically 2 to 6 itcrations are sufficient [9]). It

. - ~(0)
mainly depends on & and the initial vector 8 .

The advantage of the constrained method over the
previous is twofold:

- it incorporates directly in the estimation of 3° the
a priori information on ARCOS processes, which
should give more accuracy. More, this method gives
a direct estimation of the frequency and of the
lowpass AR parameters.

- the dimension of the vector to be estimated is
decreased since we perform a minimization on a
vector of dimension p+1 instead of 2p. More, we do
not need to resort to polynomial rooting for
estimating the Doppler frequency since this latter is
implicitely given.

4. NUMERICAL EXAMPLES
In this section, we provide illustrations of the
performances of the new method and compare it
with the unconstrained method of [1]. We consider
an ARCOS process defined by the following
parameter vector

o7 = [—2 *0.95*cos(27*0.006),0.95%, 27 *0.18]

500 Monte-Carlo simulations were run to estimate
the variances of the estimates. The number of
samples was varicd between 256 and 4096. Figures
1,2,3 show the variances for the previous method
(solid lines) and the new method (dashed lines) for
different choices of the number of YW equations M
in (9).
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Figure 1: Empirical variances of constrained
(dashed lines) and unconstrained estimates (solid
lines). M=20
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Figure 2: Empirical variances of constrained
(dashed lines) and unconstrained estimates (solid
lines). M=40
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Figure 3: Empirical variances of constrained
(dashed lines) and unconstrained estimates (solid
lines). M=100

It is shown that the constrained estimate always
outperforms the unconstrained estimate. The
improvement is shown to vary between 0.6dB and
11dB on the variance. It is worth noting that the
improvement is all the more important (between 7
and 11dB when M=20) as M is small. This means
that it is preferable to use the constrained method
when the number of equations M is small. The fact
that the improvement increases while the number of
equations decreases is a very interesting feature.
Indeed, for a given level of performance (ie for a
constant variance), the constrained method requires
less covariance lags than the unconstrained one. As
the main computational task is the estimation of the
covariance sequence and since the minimization
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involves a smaller number of equations, this can
result in significant savings from a computational
point of view. It should also be noted that, for N
large, the variance of the constrained estimate
increases while M increases. This is in contrast
with the unconstrained method.

5. CONCLUSIONS

In this paper, we proposed a new method for
estimating the frequency of a random amplitude
sinusoid. This method is based on constrained least-
square techniques. The estimated ARMA parameter
vector is constrained to belong to a subset defined
by the very particular form of ARCOS spectrum. A
Gauss-Newton algorithm is derived for proceeding
to the constrained minimization. Simulation results
prove the superiority of the new method over the
unconstrained method. It is shown that the
improvement is all the more important as the
number of Yule-Walker equations is small.
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