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Abstract

A frequency estimator for complex sinusoids in white noise is
proposed for very low SNR scenario. This algorithm possesses
the computational simplicity of Discrete Fourier Transform
(DFT) and resolution advantages of signal eigenvector
methods. Asymptotic expressions are derived to explain the
behaviour of the estimator for high and low SNR. Simulation
results shows that the estimator provides reasonably good
estimates even at lower SNR as compared to the existing
techniques.

1. Introduction

Frequency estimation of sinusoids in white noise has been a
classical problem in spectral estimation. Starting from the
simple Discrete Fourier Transform (DFT) many methods have
been proposed based on parametric and/or non-parametric
models [1,2]. For short data records all the parametric methods
like AR, MA and ARMA provide better resolution than DFT
methods. But at low SNR they fail to work. Recently high
resolution methods have been proposed for frequency
estimation [3,4]. Even though these methods have infinite
resolution capability for short data records, at low SNR they fail
to work.

Fitting model to the derived data rather than to the raw data
is shown to improve the performance of the estimators [4,5].
Tufts and Kumaresan used SVD to get the low rank
approximation of the data matrix and thereby improved the
frequency estimates. Kay's Iterative Filtering Algorithm (IFA)
uses iterative filtering on the prediction error. All these
techniques reduces the Threshold-SNR, but at the cost of
increased computation. In this paper, a new algorithm is
proposed for estimating the frequencies of complex sinusoids
in white noise at lower SNR as compared to the existing
methods. This algorithm is based on the data modelling of
signal eigenvector and uses only the Fast Fourier Transform
(FFT). Thus it possesses the computational advantages of DFT
and resolution advantages of signal eigenvector methods at low
SNR.

2. Proposed Algorithm

The aim here is to estimate the frequencies of the multiple
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complex sinusoids in white noise using L data points of the
signal. The assumed signal model is
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where n(t) is complex zero mean, white Gaussian noise of

variance 20’21, a, is the amplitude of i-th sinusoid and o, is
the digital frequency of i-th sinusoid. It is also assumed that the
number of sinusoids D is known and initial random phases o,'s

are independent and uniformly distributed over [0,2=x].
Dividing the data into M segments of N data points each, the
estimated covariance matrix can be written as
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where x,=Ab,+n, A is a Vandermonde matrix, n, is a vector

of noise samples and b, is a vector as shown below.
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Here the superscript ‘T’ represents the Transpose operator.
There are several ways in which covariance matrix can be
computed from the given number of samples. Eqn. (2) is one of

‘the many ways and is a Maximum Likelihood (ML) estimate.

The proposed algorithm is based on the following theorem[6].

Theorem: For large values of N, given a signal eigenvector of
R' , there exists only one column of A which is closest to that
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in l,-norm sense when all the sinusoids are not equipowered.

Corollary: For large values of N, each signal eigenvector
becomes approximately equivalent to one of the columns of A
matrix, which can be used to estimate the frequency of the
sinusoids.

Algorithm: Based on the above theorem the proposed
algorithm can be described as follows.

Step 1 Compute the estimated covariance marrix R'_ form the

L data points using eqn.(2). Discussion about the choice of N or
M is deferred till the next section.

Step 2 Compute D number of signal eigenvectors of the
estimated covariance matrix.

Step 3 Apply Fast Fourier Transform(FFT) to each signal
eigenvector. The frequency corresponding to the peak value in
the magnitude of FFT gives the estimate of the sinusoid
frequency.

Remarks: Some of the salient feawres of the algorithm are
listed below.

* Algorithm is very easy to implement since it uses only the
FFT. '

* Inaccurate knowledge of D is not going to affect the frequency
estimates since every sinusoid is isolated before frequency
estimation is carried out. If D is undet/over estimated then
fewer/more number of sinusoid frequencies will be estimated
than the true number.

» If the eigenvectors are arranged in descending order according
to the eigenvalues, the first signal eigenvector identifies the
sinusoid with the highest power, the second eigenvector
identifies the next higher power sinusoid and so on. And the
eigenvalues are proportional to the sinusoid powers.

* Since signal eigenvector is used, there is significant reduction
in the Threshold-SNR as observed by Totarang[7]. Moreover
due to decoupling of the sinusoids (according to the theorem),
significant improvement in the Sinusoid to Interference
Ratio(SIR) is obtained which helps to improve the estimate at
very low SNR. Here SIR is defined as the ratio of the power of
the desired sinusoid and power of the rest of the signal in the
signal eigenvector.

3. Asymptotic Analysis

For simplicity let us consider two sinusoids case. It can be
shown that the asymptotic signal eigenvectors are related to the
columns of A matrix as shown below.

agsinc
e, =clh——>"———h ©)
1 2
‘ N(a2-a?)

2 . %

alsmc A

€=\ @
N (a3 -ay))

where, h and h, are the first and second column vectors of A
matrix, ‘*’ represents the complex conjugation operator and
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Interpretation:

Case 1. Power of the sinusoids are not equal: From the above

equations, it can be inferred that even in asymptotic case (M is
infinite or SNR is infinite), e, is not equal to h,, if N is not

sufficiently large. Hence if SNR is increased infinitely for some
N, the closeness between the signal eigenvectors and the
column vectors of A does not improve beyond certain SNR.
This leads to a bias in the estimates. Hence variance does not
monotonicallty decrease with SNR. But for low SNR scenario,
small increase in the SNR of the sinusoid increases the
eigenvalue separation between the two eigenvalues and hence
improves the SNR of the signal eigenvectors. Therefore to get
accurate frequency estimates N should be as large as possible
for the given L=M N. But number of segments M should be at
least equal to D. So one possible solution would be using
overlapping segments to estimate the covariance matrix. If N
is larger and M is at least D, then Sinusoid to Interference
Ratio(SIR) improves with N.

Case 2, Power of the sinusoids are equal: Let A = QE_, where

E = I}l e2:| .Itis shown in [6] that when the sinusoid powers

are equal, the coefficient matrix Q relating the signal
eigenvectors and column vectors of A matrix will become the
eigenvectors of a nearly identity matrix. But eigenvectors of a
nearly identity matrix are not nearly euclidean basis vectors.
Hence it causes a limitation in the closeness of the signal
eigenvectors to the column vectors of A matrix, irrespective of
the data length and sinusoid SNR. So when the sinusoid powers
are equal there is a limitation in the variance of the estimate that
can be achieved in this algorithm even with large N. This limit
is a function of the difference between the power of the
sinusoids. Higher the difference between the sinusoid powers,
better will be the performance.

4. Simulation Results and Discussion

To demonstrate the capability of the method at low SNR, the
test example chosen by Tufts and Kumaresan[4] is taken. The
same example is used by Kay in [2] to compare the sinusoid
frequency estimators. The frequencies and phases are chosen to

be ®, = 0.50, ¢, = 0°, w, = 0.52, ¢, = 45°. The amplitudes

are a, = a, = 1 and the noise variance 0’2‘ is chosen to get the
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desired SNR where

SNR = 10log [—15] )]

Gll

The data record length is L = 24 complex points (Note that Tufts
and Kumaresan used 25 points to estimate the frequencies) To
compute the MSE, the 24 point data is divided into 2 segments,
The covariance matrix was computed according to the eqn.(2).
Then 2048 point FFT is applied to the first 2 signal eigenvectors
(eigenvectors comresponding to large eigenvalues) of the
estimated covariance matrix to estimate the frequencies. The
frequency corresponding to the peak value in the FFT gives the
estimate of the frequency. The MSE was calculated over 100
experiments with different random noise at every experiment.
Fig. 1 shows the Mean Square Error (MSE) of the estimate of
the first frequency along with that of IFA and Maximum

Likelihood Estimate (MLE) for @ = 0.52. Results for IFA and
MLE were extracted from page 437 of [2]. It can be clearly seen
that MSE of the estimate of the sinusoid frequency 0.52 reaches
the CR bound at 0 4B SNR which is much below the Threshold-
SNR of existing methods. But it is seen by simulations that by
using the overlapping segments with segment length = 20,
Threshold -SNR upto -12 dB can be achieved. Due to inherent
bias in the estimate, performance does not improve with SNR as
predicted in the analysis. Another peculiar behaviour of the
algorithm is that the estimation of the other frequency is not
good at very low SNR and it improves with SNR upto certain
level.

Table 1 gives the performance of the proposed algorithm for
two different lengths. It is seen that Threshold-SNR goes down
with length N. For example, when N = 24, Threshold-SNR is -2
dB and for N =32, it is -5 dB approximately. It is also seen that,
estimation does not improve with SNR as predicted in the
analysis. But increasing N helps in achieving lower and lower
Threshold-SNR. Tables 2 and 3 give the performance of the
algorithm for same frequencies and phases, but with different
amplitudes for the sinusoids along with CR bounds for N = 24
and N = 32. Tables 2 and 3 show that the algorithm performs
better when the amplitudes are different as seen in the analysis.
For this case SNR is calculated after taking the power of the
sinusoids into consideration.

5. Conclusions

A new algorithm is proposed to estimate complex sinusoid
frequencies at low SNR when compared to the existing
techniques. This algorithm is computationally attractive since it
uses only the FFT. The behaviour of the algorithm is similar to
that of a simple Fourier Transform(FT) except for the fact that
two frequencies separated by a distance less than the Fourier
distance can be resolved. In two sinusoid case, one sinusoid is
estimated with greater accuracy and other one with less
accuracy at moderate SNRs. At low and very low SNRs atleast
one frequency is estimated with greater accuracy. It is observed

that the variance of the estimates of the two estimates are not
equal even when the sinusoids are equipowered. Theoretical
explanation for such behaviour of the algorithm is to be arrived
at.

N=24 N=32
SNR
MSE (@) | MSE(,) | MSE(w,) | MSE(,)
-10 11.31 15.74 11.54 15.69
5 11.0 26.39 10.79 33.26
-2 12.03 44.6 11.35 47.25
0 10.83 45.75 12.58 50.87
5 12.64 48.32 19.71 53.47
10 17.25 49.51 30.78 55.67
20 26.81 49.90 31.61 58.47
50 27.73 50.72 31.64 60.38
Table 1: Performance for two different lengths
(All units in dB)
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CR N=24 N=32 CR N=24 N=32
SNR Bound SNR Bound
N=24 | mMse (o) MSE(w)| MSE(w))| MSE (v,) N=32 | mse (0| MSE(w,)| MSE (o,}| MsE (o))
-10 29.6 11.08 18.81 10.50 24.84 -10 31.7 15.31 10.24 12.95 12.82
-5 34.6 10.31 45.35 10.60 44.42 -5 36.7 26.91 10.92 20.61 11.70
-2 37.6 10.12 46.49 11.18 46.86 2 38.7 38.35 10.59 36.98 12.20
0 39.6 10.73 49.63 10.27 49.25 0 40.7 38.90 10.42 37.40 14.12
5 44.6 10.52 54.50 11.20° | 55.52 5 45.7 38.59 11.96 37.41 22.29
10 49.6 13.85 58.82 12.86 50.04 10 50.7 38.86 16.56 38.47 26.95
20 59.6 25.11 62.51 27.42 61.42 20 60.7 38.93 24.47 38.53 26.47
50 89.6 27.99 62.05 27.99 62.14 50 90.7 38.99 23.82 38.62 26.05
Table 2: Performance of the method for Different Table 3: Performance of the method for Different
amplitudes (All unitsindB)al=1,a2 =2 amplitudes (All unitsin dB)al =2,a2=1
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