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ABSTRACT

A new approach to estimate the phase and amplitude sig-
nal parameters of a quite general class of complex valued
signals is presented. The proposed algorithm can estimate
the signal parameters of a sum of complex signals, the am-
plitudes may be time varying and the phase functions are
modelled by some continuous functions a;(t). The data can
be evenly or unevenly sampled in time. The signal param-
eter estimates minimizes a loss function based on the pre-
diction errors of a new, time dependent, structured autore-
gressive filter. The instantaneous phase and frequency is
easily obtained from the estimated signal parameters. The
structured AR filter is a model based time-frequency repre-
sentation.

1. INTRODUCTION

The estimation of the instantaneous phase and frequency
of complex nonlinear phase complex signals is an impor-
tant and difficult task in a variety of applications. Exam-
ples are synthetic aperture radar where the desired image is
blurred and distorted due to unexpected phase variations.
The image can be focused if the phase variations are es-
timated and compensated for. Doppler radar signals from
maneuvering targets have nonlinear phase. Estimation of
the phase function coefficients can be used to obtain the ra-
dial acceleration (and higher order moments) without the
use of Kalman filtering. Passive radar intelligence systems
can use the estimated phase function parameters to identify
the transmitting radar type. The phase functions in the ex-
amples above are generally nonlinear and may have a time
varying amplitude. Also, the measurements may consist of
a sum of signals of the aforementioned type. A quite general
continuous time model for the signals under consideration
is

a(t) =) bi(t)e’ ¥ (1)

where b;(t) and a;(¢) are continuous real valued functions
that model the time varying amplitude and phase, respec-
tively, and ¢ denotes time. The instantaneous phase and
frequency of the I:th signal component at time ? is defined
as a;(t) and Zai(t).

The classical approach to phase estimation is by phase
locked loops, which is a non parametric approach. Max-
imum likelihood estimation could be used if a parametric
model is assumed, but this approach is impractical due to
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extreme numerical difficulties. The special case of chirp sig-
nals (of constant amplitude) has been addressed in a num-
ber of papers, see for example [2] and the references therein.
An approach to estimate and classify a single (p = 1) non-
linear phase complex signal of constant amplitude based on
an integral transform was presented in [1]. Parametric es-
timation of multiple amplitude modulated nonlinear phase
complex signals from noisy measurements, however, appear
not to have been reported.

Here, a new approach to the signal parameter estima-
tion of the quite general class of signals modeled by (1) is
introduced. The signal parameter estimates are found from
sampled data as the minimizer of a loss function based on
the prediction errors of a new time dependent structured
autoregressive (AR) filter. Unevenly sampled data, ie. a
time varying sampling interval, is allowed. The instanta-
neous phase and frequency is easily obtained from the esti-
mated signal parameters.

The structured AR filter is a model based time-frequency
representation of the signal and can, for example, be used
to plot the time varying spectral density. The structured
AR filter appears to be one of the first model-based time-
frequency representations to be reported, c.f. [4].

2. PROBLEM SETUP

Consider a complex valued signal modeled by (1). The time
continuous signal z(t) is sampled at time instants {tx}n=;.
The sampling interval (¢x — tk—1) may vary. The measure-
‘ments are corrupted by additive identically distributed in-
dependent random variables e(tx) with zero mean and vari-
ance o*:

y(tx) = o(te) + e(tx) (2)

Let the functions ai(t) and b;(t) be parametrized by some
parameter vector 9. For example, if the signal is a single
high order polynomial phase signal with constant ampli-
tude,

q r
I(tk) = boeJ r=0 art (3)

then 97 = (a1, ..., aq, bo)-

The algorithm to be presented enables estimation of the
continuous time signal parameters defined in 4.
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3. THE STRUCTURED AR FILTER

The prediction error of an n:th order AR-filter can be writ-
ten as

e(te) = y(te) + > _ ca y(tk—a) (4)

d=1

where (cl,...,.cn)éeT denote the AR-parameters. It is
well known how 6 shall be choosen such that the variance
of the prediction errors is minimized in the case of wide
sence stationary (WSS) and correlation ergodic signals. If
only one realisation is available and the signal is not WSS
and correlation ergodic these AR parameters are of little
value of obvious reasons. If, however, an ensamble of M
realizations is available then 8 can be calculated at time
instant ¢; from the ensemble as:

8(te) = —R(te)7'#(ta) (8
A(te;1,1) A(tx;1,n)

Ru) = : : (6)
Atk m, 1) p(tx; n,n)

() = (p(ts;1,0) ... 5(tk;n, 0)) (7

A(tr; u,v) % Z Ym (P )¥m (tk—v) (8)

where 4 and v are integers and ym(tx) referres to a mea-
surement from the m:th realization. The (ensemble) AR
parameters (5) are time varying in the general case and can
be estimated even if the sampling period tx — ¢4, is not
constant.

Unfortunately (5) is of little value in practical situations
since mostly only one realization is available. The analyti-
cal AR-filter of order n that minimizes the expected predic-
tion error variance of the ensamble at time ¢x can, however,
easily be derived as a function of the signal parameters 4.

Consider the (hypthetical) case when an infinite number of
realizations are available, i.e. when M — oco. From (8), (2)
and (1) it follows that the analytical covariance function at
time tx can be written as

A
p(tk; 9, u, v)=

1 M
37 2 ¥ ltie o)

limare oo

(Zbl thu)e™ ap(tx— u))(zbq(tk )eJ aq(tk_,,))

gq=1
+o? Ou,v (9)

Introduce the notations

P
Zbl(tk—u)e] ai{tx.n) (10)

(3(te; 9,1), ..., 8(tk; 9, n)) (11)

Then the analytical {ensemble) covariance function, vector
and matrix at time ¢z can be written as

p(ti; 3, u,v) = s’(tk;ﬂ,u)s(tk;ﬂ,v)+026u,., (12)

S(tk; 9, u) =

S(ty;9) 2

% (tx; 8)s(tx; 9, 0) (13)
S (t;9)S(tx; 9) + 0°1, (14)

r(tx; 9)
R(tk;'ﬂ)

where I;, denotes an (n | n) identity matrix. From (12)-
(14) the analytical AR parameters at time tx can easily be
calculated as

(tk,'ﬂ) (tk,ﬂ)_lr(tk,ﬁ) (15)
Formula (15) involves an inversion of the (n | n) matrix
R(ty;9) which implies heavy computations. This can be
avoided by a strightforward use of the matrix inversion
lemma; (A+BCD)™' = A~ —A"'B(DA™'B4+C)"1DA!.
Using A = ¢°I,, B = SH(tk,ﬂ) C =1and D= S(t;9)
and assuming that o° £ 0 gives the final formula for the
structured AR-filter:

1
(tki 9)= {S(tk 9)SH (tx; 9) + 02
SH(ti; 9)S(t; 9) — In}SH (t5; 9)s(tx, 0; 9) (16)

An intuitive understanding for the structured AR-filter
is gained by studying how the structured AR-parameters
use previous measurements to make a prediction. The mea-
surements {y(tx—.)}a=1 are rotated by the complex valued
structured AR-parameters {c.(tx;9)}i—; such that they
are aligned with y(tx), i-e. y(tx—u) is rotated a{tx)—a(tk—u)
radians. The magnitude of the structured AR parameters
are, by construction, such that the expected (ensemble) pre-
diction error is minimized. Indeed, the structured AR-filter
can be derived using that the argument of the u:th struc-
tured AR-parameters must equal a(tx) — a(tx—.) since the
noise e(tx) is uncorrelated with the signal z(¢x). Then an
optimazation of the magnitude of the structured AR param-
eters such that the expected (ensemble) prediction variance
becomes minimal gives the same result as in (16).

4. SIGNAL PARAMETER ESTIMATION

The estimate of the signal parameters 9 is defined as

o min

d=arg § Vn(d) (17)

where the criterion function Vi (9) is given by

VN('ﬂ) = 71’- Zcz(tk;'ﬂ) (18)

Several choises of the loss function V() exist but are not
discussed here.

It follows from the construction of §(tx;¥) that dp min-
imizes E[Vy(¥)], where ¥ denotes the true signal parame-
ters. Straightforward manipulation gives

N

N
EVe(9)] = Elzr 3 ()] —-—},Z [ (t;9)]

k=1

N
57 S E(tei 90)] = EVw(5)]  (19)

v

1769



Note that (19) holds independently of the structured AR
filter length, the number of data N and even if the data has
been sampled unevenly in time.

The minimazation of (17) is easily implemented using
e.g. a Gauss Newton search. The derivatives of (t; 9) with
respect to the signal parameters in ¢ are straightforward
to derive. The search can be implemented off- or on-line
{tracking).

Unfortunately the loss function Vn(#) contains local
minima, so care must be taken such that the search con-
verges to the global minima. The loss function has, how-
ever, some nice properties that have been confirmed by nu-
merical studies. The radius of attraction of the global min-
ima increases with decreasing structured AR order n. In
fact, in the case of a “pure” complex signal where a;(t) =
¢1+w;t there are no local minimaifn = 1. In the case of non
stationary signals the radius of attraction of the global min-
ima increases with decreasing number of data, N. Hence a
low order structured AR filter length can be used on a small
portion of the data in order to get initial estimates. Then
the data set and the structured AR length can be increased
in order to get more accurate estimates.

Estimates of the instantaneous phase and frequency are
easily obtained as d;(t) and ﬁ&z(t) respectively.

5. TIME-FREQUENCY REPRESENTATION

The structured AR filter is a time-frequency representation
(TFR). Once the signal parameters 4 have been estimated
it is a simple matter to get an estimate of the instantaneous
power spectrum density (PSD) as follows. Given ¥ choose
a constant “sampling” interval A = tx — tx—; and a struc-
tured AR model length n. Then calculate the structured
AR parameters from (10)- (14) and (16) and substitute into
the theoretical PSD to obtain

1
1+ 3 oy calts; 9)e—sd |

Par(ts,w) =|| (20)

where w € [0, 27) is a discrete frequency.

The design parameters n and A can freely be chosen
by the user to suit the purposes. In a sense the struc-
tured AR filter can be viewed as an instrument to get the
instantaneous PSD from the signal parameters 4. Note
that Par(t&,w) at time tx is derived from all available data
{y(te)}Z,. This is not the case in, for example, the short
time Fourier transform (STFT) where only a small portion
of the data from a sliding window is used to get an estimate
of the instantaneous PSD.

There is a trade off between time and frequency resolu-
tion determined by the choise of instantaneous structured
AR “observation window” width (tx — tx—n) = nA. The
“observation window” can be viewed as a sliding window
length similar to that in the STFT. Using a small “obser-
vation window” will yield good time resolution at the cost
of poor frequency resolution and vice versa. The fit of the
structured AR model improves with increasing model or-
der n. A good model fit implies a good spectral resolution.
Hence n shall be chosen large enough such that a good
spectral resolution is achieved, but not too large such that
a satisfactory time resolution is maintained.

6. NUMERICAL STUDY

The structured AR estimation method has been studied by
means of Monte Carlo simulation. For each set of parame-
ters 50 independent experiments were run.

6.1. Dependence on SNR

Consider the same signal as that used in the example in [1],
ie. a single complex signal with constant amplitude and
polynomial phase of order 3; a(t) = ao + a1t + a2t® 4 ast®,
{ai}io = {1,2007,967,2048%}. The signal was evenly
sampled in the interval [0,500/2048] and N = 100. This
is only a fraction of the data used in [1] where N = 2048.
The minima of Viy(J) w.r.t. the time invariant ampli-
tude is very flat in the case of a single complex signal. Hence
the search for ¥ becomes ill conditioned if 4, is included, so
bo is preferrably fixed to a guessed value during the search.
Therefore, and since the structured AR filter is indepen-
dent of the initial phase ao for the case of a single complex
signal, only {a;}}_; were estimated using the structured
AR method and then {ao,b0} were estimated using a least
squares fit. The value of (the fixed) bo used in the search

was set to to a random value such that the SNRS I:: was
uniformly distributed in [SNR¢ — 5dB, SNR, + 5dB]2, where
SNRo denotes the true SNR.

Figure 1 shows the relative efficiency (the mean square
error divided by the Cramer-Rao lower bound where the
Cramer-Rao lower bound was derived in [3]) for 43 when
n = 8 and 16, respectively. The behaviour of the relative
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Figure 1: Relative efficiency versus SNR, n = 8, 16.

efficiency of {a;}_, is very similar to that illustrated in Fig
1 and therefore not shown here. The relative efficiency of
{a:}3.0 at SNR=0dB for n = 16 is {2.5, 2.3, 1.8, 1.5} re-
spectively, a result which is comparable to 1.5-1.7 that was
reported in [1]. In other similar examples a relative effi-
ciency of 1.2 has been achieved when using the structured
AR algorithm.

The performance of the algorithm proposed in [1] de-
teriorates rapidly for SNR below a threshold. This is also
the case for the structured AR algorithm. The threshold
is, however, approximately 4dB (n = 8) and 8dB (n = 16)
lower for the structured AR algorithm than for that pre-
sented in [1]. The threshold decreases with increasing n.
The dependency of the threshold on n is under current in-
vestigation.

6.2. Dependence on n

Figure 2 shows the relative efficiency of @3 versus n for fixed
SNR=10dB for the same case as in Fig 1. The correspond-
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ing curves for {a:}?_, are similar and therefore omitted. For
small n, the performance improves with increasing n until
an optimal value is reached. Then, as n is increased beyond
the optimal value, the performance deteriorates. The opti-
mal choise of n has been found to depend on the number of
data and SNR. The dependency is under current investiga-
tion.

8 T T T T T v —
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Structured AR order

Figure 2: Relative efficiency versus n, SNR=10dB

6.3. Unevenly sampled data

The structured AR algorithm allowes unevenly sampled
data in time. A numerical investigation has shown that
the statistical properties of the estimates depend on the
sampling strategy. Indeed, it is possible to achieve im-
proved accuracy if the data is unevenly sampled in time.
To illustrate, consider the same example as in Fig 2 but
with data unevenly sampled. The data was sampled in four
“bursts”, each consisting of 25 samples (evenly) separated
ﬁs apart. The “bursts” were in turn evenly spread in
the same time interval as that used in the example corre-
sponding to Fig 2. The relative improvement of the MSE,
l.e. M—-S—M’%ISEZ where MSE; denotes the MSE in Fig 2
and MSE, denotes the MSE achieved when using unevenly
sampled data, was 82%, 78%, 66% and 60% for {a:}_,,

respectively.

6.4. Time frequency representation

Figure 3 shows the spectogram derived using the STFT on
a constant amplitude complex signal with polynomial phase
of order 3; {a:}}=o = {1, 1207, —1007, 607}. The signal was
(evenly) sampled in the time interval [0,1]; A = 0.01 and
N = 100. Figure 4 shows the corresponding spectogram
derived using the structured AR approach (20). The same
“observation window” and “sampling interval” was used in
both cases, i.e. the sliding window in the STFT was as wide
as the structured AR filter was long and A was chosen to the
sampling interval of the data. The “observation window”
length (n) was chosen to 5.

The resolution when using Par(ty;?) is significantly
better than that achieved when using the STFT. The spec-
togram from Par(tx;?) is not as sensitive to noise as that
achieved when using the STFT, i.e. it is smoother.

7. CONCLUDING REMARKS

The structured AR algorithm has been applied to a vari-
ety of signals such as sums of complex signals and signals
with time varying amplitudes. The results confirm that the
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structured AR algorithm successfully can estimate the pa-
rameters of such signals. The results have, however, not
been included here due to lack of space. A corresponding
algorithm for real valued sinusoidal signals has been derived
and verified as well.

The statistical properties of the structured AR algo-
rithm and it’s relative performance to other estimators and
time-frequency representations is under current investiga-
tion.
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