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ABSTRACT

A modified Euclidean algorithm is presented for de-
termining the period from a sparse set of noisy mea-
surements. The set may arise from measuring the oc-
currence time of noisy zero-crossings of a sinusoid with
very many missing observations. The procedure is com-
putationally simple, stable with respect to noise, and
converges quickly. Its use is justified by a theorem that
shows that, for a set of randomly chosen positive inte-
gers, the probability that they do not all share a com-
mon prime factor approaches one quickly as the cardi-
nality of the set increases. Simulations are presented
to demonstrate the proposed algorithm.

1. INTRODUCTION: THE PROBLEM

We are given the finite set of real numbers
S= {s_.;};-‘=1 , with 8 = ij+ €5, (1)

where 7 is a fixed positive real number to be deter-
mined, the k;’s are non-repeating positive integers, and
the ¢;’s are zero-mean indep. ident. dist. (iid) error
terms. We assume that the ¢;’s have a symmetric prob-
ability density function (pdf), and that |e;| < § for all
j. Without loss of generality, we will also assume the
set S is ordered so that the k;’s and thus the s;’s are
monotonically increasing (or decreasing). We may then
interpret the s;’s as occurrence times, with time gaps
or jumps determined by the k;’s. For example, letiing
ky =1,k =3, k3 =5, ..., corresponds to missing ev-
ery other occurrence of a periodic event with period .
In general, the solution is the unique maximum value
of T such that the k; are all integers. Note that for any
solution T that fits the form of S, the numbers 7, 3,...
are also possible solutions.

The set (1) may occur in situations with unreliable
measurements, such as fading communications chan-
nels or biomedical applications. A useful interpreta-
tion of our problem is to consider the set S as contain-
ing measurements of the time of occurrence of noisy
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zero-crossings of a sinusoid, with (perhaps very many)
missing observations. Given z(t) = cos[27ft + ¢(2)]
then zero-crossings are observed at odd multiples of
T = 1/4f, with measurement error (phase jitter) intro-
duced by ¢(t). The k;’s in (1) represent the occurrence
of available measurements, and the ¢;’s are associated
with ¢(t).

We solve for T by using a modified Euclidean algo-
rithm to find the greatest common divisor of the set
S. The use of this algorithm is justified by a theorem
that shows that, given a set of uniformly distributed
positive integers distributed over an arbitrarily large
lattice, the probability that they all do not share a
common prime factor approaches one quickly as the
cardinality of the set increases. In the noise-free case
our algorithm is equivalent to the Euclidean algorithm
and converges with very high probability given only 10
measurements, independent of the number of missing
observations.

Our problem is similar to that of spectrum anal-
ysis using zero crossings. However, approaches based
on zero-crossing counts (e.g., see Kedem [4]) are not
applicable in our framework. Kay and Sudhaker pro-
posed the use of the occurrence time of zero-crossings
to obtain DFT coefficients [3]. This method requires
addition of an auxiliary signal before detection of the
zero-crossings and is therefore not applicable here. We
also note that multiplicative (AM) missing observation
models are not applicable due to their assumption of
uniformly spaced amplitude samples (e.g., Parzen [7]).

2. A MODIFIED EUCLIDEAN
ALGORITHM FOR FINDING 71

Given the set S as in (1), we develop a modified Eu-
clidean algorithm to find 7. The Euclidean algorithm
is a division process for the integers Z, which yields the
greatest common divisor of two (or more) elements of
Z. We assume throughout the paper that {k;} C N,
the set of positive integers (or natural numbers), and
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that the k;’s are sorted in descending order (unless oth-
erwise noted). The symbol ged(ky, ..., ky) is the great-
est common divisor of the set {k;}, i.e., the product of
the powers of all prime factors p that divide each k;.
Note that this is not the pairwise ged of the set {k;}. If
ged(ky, ..., kn) = 1, the set {k;} is called mutually rel-
atively prime. If, however, ged(k;, k;) = 1 for all i # j,
the set {k;} is called pairwise relatively prime. If a set
is pairwise relatively prime, it is mutually relatively
prime. However, the converse is not true (for example,
consider the set {35,21,15}). The computation of the
ged of a set of more than two integers uses the fact that
gcd(kl, ceay k,.) = gcd(kl, ey kn_z, (gcd(k,._l, k“)))
(see Leveque [6]).

The standard Euclidean algorithm involves repeated
division with remainder, terminating when the remain-
der is zero. In our problem, we are dealing with num-
bers that are essentially “noisy integers.” Remain-
der terms could be noise, and thus could be non—zero
numbers arbitrarily close to zero. Subsequent steps in
the procedure may involve dividing by such numbers,
which would result in arbitrarily large numbers. Thus,
the standard algorithm is unstable under perturbation
by noise. However, the algorithm may be modified so
that the process of subtraction replaces division.

The modified algorithm is based on the following
lemma, proven in Casey and Sadler [1]. We assume
T> 0.

Lemma 2.1

(3.) ged(kr7,...,kaT) =T1gcd(ky,..., kn),

(ii.) ged(ky,...,kn) =
ng((kl - kz), (kz - ka), ceny (kn—l - ku), kn) - O

This lemma allows a reformulation of the Euclidean
algorithm, using subtraction rather than division. This
idea works for the set S as follows. First, sort the ele-
ments of S in descending order, so that 81 > 82 > --- >
8,. Then, form a new set by subtracting adjacent pairs
of these numbers, given by 8; — 8;;1. The result is a
set of the same general form as S. Because of the ¢;
perturbations we establish a threshold ¢p and, after the
first sort and subtract, we declare all numbers in the
interval {0, ¢g] to be zero and eliminate them from the
set. Choice of ¢g is dictated by the distribution of the
€;’'s, with 0 < €0 < 7. We then adjoin the previous non-
zero minimum to the set. The algorithm is continued
by iterating this process of sorting, subtracting, and
eliminating the elements in {0, ¢9], adjoining the previ-
ous non-zero minimum at each new iteration, and ter-
minating when all elements are in [0, ¢}, i.e., equal to

“gero.” The maximal non-zero element from the previ-
ous iteration is equal to ged(ky, ..., k,) - T error term.
The algorithm for finding T given the set S is sum-
marized as follows. We assume for this and all other
algorithms that the original data set is in descending
order, l.e., 8; > 8;+1.
Modified Euclidean Algorithm
. Save 3, = min(S) for adjoining in step 3.
. Form the new set with elements s; — 8;.;.
. Adjoin s,, from step 1.
. Sort in descending order.
. Eliminate elements in [0, ¢o] from end of the set.
Algorithm is done if left with empty set. Declare
= 8; from previous iteration. If not done, go to 1.

W N =

-|>5:ncnu=

Note that given the set S and an estimate 7, we can
estimate k; using l;j = round (s; /), where round(-)
denotes rounding to the nearest integer.

The success of the algorithm depends on the fact
that ged(ky,..., k) — 1 with probability 1 as n —
oo (see Casey and Sadler [1]). Moreover, in [1], we
have shown that this convergence is very fast, imply-
ing that the proposed modified Euclidean algorithm
yields 7 and the sequence {k;}?_, for small (n ~ 10)
to moderate (n = 100) values of n, depending on the
distribution of the ¢;’s. In order to state our results,
we need to establish some background on Riemann’s
Zeta function, which is defined on the complex half
space {z € C: R(z) > 1} by ¢(2) = Yoo, n~*. Euler
demonstrated the connection of { with number theory
by showing, in 1736, that

=]

1
{(2) = — , R(z) > 1, 2
&= == (2)
where P = {p1,p2,p3,...} = {2,3,5,...} is the set of
all prime numbers.

Theorem 2.1 Given n (n > 2) randomly chosen pos-
itive integers {k1,...,kn},

Plgcd(ks, ..., ka) = 1} = [¢(n)) " . O

The result is classical for the case n = 2, and was
proven by Dirichlet in 1849 (see Knuth [5], pp. 324,
337, 595, and Schroeder [9], pp. 48-50). Our proof
follows directly from the following theorem. We let
card{-} denote set cardinality, and let {1,...,£}" de-
note the sublattice of positive integers in R® with co-
ordinates ¢ such that 1 < ¢ < £.

Theorem 2.2 Let

N,.(§) =

card{(ki,...,ka) € {1,...,£}" : ged(ky,..., kn) = 1},
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For n > 2, we have that

. Na(O) -
Jim =22 = K@) o

The values for {(2k) can be computed explicitly,
using Cauchy Residue Theory (see [2]). The values
{(2k+1) can be estimated numerically. It can be shown

that that [¢(n)]”' — 1 quickly as 7 increases (see [1]).

3. FURTHER MODIFICATIONS

In this section we consider the effect of the noise pertur-
bations on the modified Euclidean algorithm, and show
how the noise effects can be reduced. In the modified
Euclidean algorithm we have replaced division with re-
peated subtraction in order to gain stability with re-
spect to noise. Error analysis of this approach is com-
plicated by the fact that the algorithm is iterative and
involves order statistics.

Suppose the pdf of the ¢;’s is given by fe(¢), and
consider the set of differences obtained in the first iter-
ation, given by

Yi = 85 — 841 = (kj —kj1 )T+ (6 —€j41).  (3)

" Invoking the zero-mean iid assumption on the ¢;’s the
pdf of (¢j —e€;j+1) is given by the convolution f, (€)= fe (€).
So, for example, if f.(¢) ~ U[-2, 4] (e is uniformly dis-
tributed with parameter A) then fy,(y) = tri[y — (k; —
kj;1)7], the triangle function centered at (k; — kj41)7.
Two points can now be made. First, after the first it-
eration the differencing operation has removed the in-
dependence of the error terms. Second, the ordering
operation makes the nature of the dependence in sub-
sequent iterations difficult to determine. Analysis of
order statistics very often rests on an iid assumption,
e.g., see [8].

In general, beyond the first iteration the pdf of
the subsequent error terms becomes asymmetric, even
when starting with iid ¢;’s with symmetric pdf f.(e).
This occurs due to the reordering before differencing
at each iteration. The result is that using the modified
Euclidean algorithm without averaging leads to nega-
tively biased estimates of r after the first iteration due
to the skewness of the pdf of the errors. However, after
the first iteration the error is still symmetrically dis-
tributed. As we see from (3), the y;’s will be clustered
about integer multiples of 7, given by (k; — kj1)7 for
each j. The data has concentrated into “steps” with
symmetrically distributed error about each step. This
suggests averaging the data around each step to remove
the noise effects as much as possible. A threshold ¢ is
chosen to partition the steps. In practice the threshold

€0 may be chosen adaptively based on the spread of the
data about r. This leads to the following algorithm.
Modified Euclidean Algorithm (w/ Averaging)
1. Save s,, = min(S) for adjoining in step 3.

2. Form the new set with elements s; — 8;4;.

3. Adjoin s,, from step 1.

4. Sort in descending order.

5. Average the data in each interval [kt — ¢, kT + €],
fork=1,2,....

6. Eliminate elements in [0, &) from end of the set.

7. Algorithm is done if left with empty set. Declare
7 = 8, from previous iteration. If not done, go to 1.

This approach produces significant data reduction at
each iteration and therefore greatly increases the speed
of convergence. The averaging algorithm is also effec-
tive for extremely sparse data sets, as we demonstrate
by example in the next section.

If the data is such that, after the first iteratiom,
there is a relatively large cluster around the first step,
then we can readily estimate r by finding the first step,
averaging only over these data points in the interval
[T — €0, T + €0], and declaring this to be #. Under our
assumptions this is an unbiased estimate. Accurate
estimation of 7 from a single iteration assumes that
n is large enough, and the spread small enough, to
yield sufficient data in the neighborhood of 7. This is
a function of the distribution of the k;’s. For example,
suppose the stepsize between observations is uniformly
distributed on the discrete interval {1, M] (M integer).
Then, for large =, after the first iteration we expect the
data to cluster into M bins with n/M points in each
bin.

Modified Euclidean Algorithm (One Iteration)
1. Given the set S, form the new set with elements

8; —8541.

2. Sort the new set in descending order.

3. Eliminate elements in [0, €g] from end of the set.

4. The estimate 7 is the average over the data in [r —

€0, T + €0]-

4. SIMULATION RESULTS

In this section we present simulation results for the
proposed algorithms. All estimates and their standard
deviations are based on averaging Estimates of 7 are
labeled 7 with std(7) the experimental standard devi-
ation and n the number of data points. Without loss
of generality, we take 7 = 1 in all experiments, and set
the threshold value of ¢ = 0.357 = 0.35. The value
of iter is the average number of iterations required for
convergence, and %miss denotes the average number
of missing observations expressed as a percentage of the
total possible number of observations. Noise free simu-
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Table 1: Example 1 results, repeating example 2 with
missing observations modeled by a Bernoulli process.

n A A Y%miss | iter 7 std(+)
10 | 0.80 | 0.001 76.64 5.98 | 0.9988 | 0.0010
10 | 0.80 0.01 76.81 6.46 | 0.9885 | 0.0054
10 | 0.80 0.02 76.54 5.66 | 0.9763 | 0.0109

lations confirmed the expected behavior of the modified
Euclidean algorithm, with n = 10 observations gener-
ally sufficient for recovery of 7 with an arbitrarily large
percentage of observations missing.

Ezample 1: Bernoulli model for missing observa-
tions. We implemented the modified Euclidean algo-
rithm of section 2, modeling the missing observations
using a Bernoulli process, given by

P(missing observation) = A
P(observation occurring) = 1-A. (4)
The probability of an observation occurring is assumed
independent between observations. The gaps in the
data are modeled as uniformly distributed. The ¢;’s
have uniform distribution, given by f.(¢) ~ U [—-%—, —2— .
Results are shown in Table 1. The value A = 0.8 was
used, corresponding to & 77% observations missing,
and the noise parameter A was varied.

Ezample 2: Single iteration algorithm. In this ex-
ample we implement the single iteration algorithm of
section 4, with results shown in Table 2. yielding ~
80% missing observations. Here #data is the average
number of data points occurring in [r — €, T+ €] after
the single iteration, and std is the experimental stan-
dard deviation. Note the quality of the estimates of 7
despite large error terms.

Ezample 3: Averaging algorithm with 98% missing
observations. As a final example we implement the av-
eraging algorithm of section 4 with very sparse data,
with results shown in Table 3. This example demon-
strates the effectiveness of averaging (resuits should be
compared with example 2 where the lack of averag-
ing lead to significant bias in the estimate of ). The
jumps in the k;’s were uniformly distributed on [1, M]
with M = 100, corresponding to = 98% missing obser-
vations. A threshold of ¢ = 0.5 was used to determine
the occurrence of a step. Note the rapid convergence
in 3 to 4 iterations, with accurate estimation of 7 from
100 data points with +10% phase jitter.

Table 2: Example 2 results, single iteration algorithm
with Bernoulli missing observation model (A = 0.8,
yielding A 80% missing observations).

n A #data | std a std(7)
100 1073 18.6 | 3.5 | 1.0000 | 0.00008
100 10~2 18.3 | 4.0 | 0.9999 | 0.0008
100 107! 18.8 4.1 | 1.0000 | 0.0081
100 | 2x 107! 19.1 4.3 | 1.0031 | 0.0157
200 | 2x 107! 385 | 5.6 | 0.9978 | 0.0134
200 | 3x 10! 378 | 6.6 | 0.9956 | 0.0197

Table 3: Example 3 results, multiple iterations with
sublevel averaging, with ~ 98% missing observations.

n A ster | std(iter) 7 std(7)
100 107° 3.4 0.48 1.0000 | 0.00008
100 1072 3.3 0.45 1.0001 | 0.00064
100 107! 3.3 0.45 1.0005 | 0.0060
100 { 2x 107! | 3.3 0.46 0.9955 0.037
200 | 2x 107! | 3.1 0.30 0.9993 | 0.0072
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