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ABSTRACT

This paper treats the problem of ambiguity resolution
using non-uniform sampling. This problem occurs for
Doppler estimation in coherent pulsed Doppler radar.
In this paper, we study the case where the duration
between two samples is a linear function of time: qua-
dratic sampling. Assuming that the continuous signal
is stationary, the sampled signal will be non-stationary.
The autocorrelation of this signal is derived and the
Wigner distribution of the sampled signal related to the
spectrum of the continuous signal. As a consequence,
a time frequency relief of the signal will verify sym-
metries. ‘These constraints, assuming an AR evolutive
model for the sampled signal and band limitation for
the continuous signal, allow the derivation of a particu-
lar time varying model for the samples. An associated
estimation algorithm, leading to the unfolded spectrum
is then proposed.

1. Motivation of this work

In a coherent pulsed Doppler radar, [1], the echo distri-
bution in Doppler is retrieved from the power spectrum
of a signal sampled at the pulse emission instants ¢,.
Consequently, if the pulse repetition frequency (PRF)
is constant, i.e. t, = n/PRF, this distribution can
only be estimated modulo PRF (e.g., for an ideal point
target we obtain after coherent demodulation and pulse
integration Aexp(j2x(fp/P RF)n)). In many systems
requiring low P RF to avoid range ambiguity. as surveil-
lance radar, this ambiguity occurs.

To overcome this aliasing effect a solution is to emit
pulses at nmonuniform intervals. A widely employed
technique is the use of multiple PRF, the ambiguity
resolution is achieved by searching for coincidence be-
tween unfolded Doppler estimates for each PRF, [2].
The main two lacks of this solution are that it does not
apply to a wide band process and that the signal co-
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herence during the whole observation time is not fully
exploited.

To overcome these problems, we propose the use
of a quadratic pulse emission law, i.e. the duration
between two pulses is a linear function of time.

This communication is organized as follows: the
first section analyses the effects of the quadratic sam-
pling on a continuous stationary signal. In the second
section, under band limited assumption, a non station-
ary autoregressive model is derived for the sampled sig-
nal. Section three presents an estimation algorithm for
this model, leading to the unfolded spectrum (AR pa-
rameters + ambiguity order). In the fourth section,
performances of the proposed method are evaluated by
computer simulations in the lines spectrum case.

2. Properties of a quadratically
sampled signal

We will consider that:

tn = (0"/2)”:Z +n, a>0,

and the sample z(¢,) will be noted z,.

To enlight the ambiguity resolution principle, con-
sider the elementary case where the continuous time
signal z(t) is a sine wave with frequency fp. As a re-
sult z,, is a chirp with sweep rate o fp, quantity that
can be theoretically estimated without ambiguity.

To derive a more detailed analyzis of the effect of
the sampling we will assume that z(t) is harmonizable
and stationary, i.e., [3]:

+00
z(t) = / exp(j2r ft)dX (f)

. E{dX(N)dXT(f)} = 6(f - fdS(Hdf.

Substituting t by 1, in this expression leads to the
following representation for the discrete time signal z,:

+o0
2o = / exp(j2n((fa/2)n® + fn))dX(f),(1)

-0

E{dX(f)dX"(f")} = 6(f — f)dS()df'.  (2)
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Now, contrarily to the uniformly sampled case (o = 0),
the chirps exp(j27((fa/2)n® + fn)) are discernable for
every value of f, hence, the integration domain in (1)
is not reduced.

We can also notice that the representation (1) is no
more doubly orthogonal: whereas the spectral incre-
ments are still orthogonals, the decompositions func-
tions are not orthogonal. This result is natural, the
signal z,, being obviously nonstationary.

Representation (1,2) allows the computation of the
autocorrelation of z,. Under sufficient conditions, we
have:

+oo
Efeassti s} = [ expljdnflan+ DiS(f)

+o00

= 1/(an+ 1)/ exp(jdn fk)dS(f/(an + 1)).

- 00

This equality can be inverted and leads to:

k=400
Wn, f) = 2 Z E{zn4szy_i} exp(—jin fk)
k=-00
_ 1 ' fta
- an+1q=z_: S(an+1)
W(n,f) = Sans1(f/(an+1)), (3)
where:

e W(n, f) is the Wigner Ville distribution of z,,
4],

e Sun+1(f) is the spectrum of the signal z(t) sam-
pled at frequency 1/{an + 1).

Consequently, the Wigner Ville distribution at in-
stant n of the quadratically sampled signal equals the
spectrum of the uniformly sampled signal at a sampling
frequency 1/(an + 1) and dilated by a factor an + 1.

3. Model derivation for the sampled
signal

Our next purpose will be to derive a general model
for z,. This will be first achieved using an elementary
reasoning on a quadratically sampled harmonic of the
signal. The obtained result will then be recovered using
Eqn. 3.

For this consider the sampling effect on the har-
monic component of z(¢) at frequency fp = fr + n,
where n, € Z is the ambiguity order and f, € [0, 1] the
decimal part of fp. The “instantaneous” frequency as-
sociated to this sampled component becomes:

fi(n) = anfp+ fp

(med 1) an(fr +n.) + fr (4)
= an.n+ (an+1)£(0), (3)

I ',.-"s'lo;ze: afpi

fra2
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Time

Figure 1: Time-frequency representation for a quadrat-
ically sampled bicomponent signal.

where f, = f;(0). Fig. 1 sketches this result using a
time-frequency representation of z,, denoted p(n, f).
From this result, if we make the assumption that all
the frequency components of the signal have the same
ambiguity order n,, i.e. the bandwith of the signal
is smaller than 1, p(n, f) will verify the fundamental

relation:
f- an,n)

pln. 1) = p (0,220 (®)

This relation can be directly obtained using Eqn. 3.
In fact, under maximum unit bandwidth assumption,
as Fig. 2 shows, the spectra of z(t) sampled at a fre-
quency 1 and 1/(an + 1) are related by:

1
an+1

Substitution of this result in Eqn. 3 leads to:
W(n,f) = Sant1(f/(an+1))

San+1(f) = Sl (.f - anrn/(an + 1)) (7)

= an1+ 151(f/(an + 1) - an.n/(an + 1))
Winf) = ——=W(O,(f - ann)/(an+1).

This expression differs from Eqn. 6 by 1/(an-+1). How-
ever, has it will be seen in the simulations, an < 1.
Consequently, this term will be neglected in the follow-
ing.

The model of z,, will necessary verify this condition.
We guess for it in the sequel an evolutive AR model, [5]:

a*(n)

IS0 _o ax(n) exp(=2in fk)|*’

p(n, f) = (8)

ao(n) = 1.

The point is now to establish the conditions verified
by the parameters {ax(n)}x=1,, and o?(n) in order that
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Figure 2: Spectrum of a bandlimited signal sampled at
a frequency of 1 and 1/(an + 1).

2(n, f) given by Eqn. 8 verifies Eqn. 6. The system
obtained replacing Eqn. 8 in Eqn. 6 is naturally non-
linear and does not necessarily have a solution.

To alleviate these difficulties, we first suppress the
time dependence on the white noise variance o?(n) re-
laxing the constraint ag(n) = 1 forn > 0. To cope with
the remaining non-linearity issued from the squared
absolute value, we consider a set of N frequencies,
{fe }x=1,~ and impose the desired relation without the
square absolute value, on this set. It is important to
remark that this is a sufficient condition to obtain the
desired relation on this set.

Under these hypothesis, the relation between pa-
rameters {ax(n)}r=0, and {ak(0)}x=1,, becomes lin-
ear:

M(fi,...,fn).e(n) = M'(fi,..., fn,a,n,).a(0), (9)
with:
a(n) = (ao(n), a1(n),. .., ap(n))",
2(0) = (1,a1(0),...,a,(0))". :

We can finally demonstrate that the least squares so-
lution of Eqn. 9 with f; = (k=1)/N,k=0... N1,
(6], is:

Q(Tl) = P(n,n,.,a,N)g(O), . (10)
where the (& + 1,q + 1) element of the P+1lxp+1
matrix I'(n, n,, a, N) equals:

Yo.0(n) =1 (11)
. anen
Ta(n) = exp{2ir22 )
exp{—2irg/(an + 1)} - 1
exp{2in(k - ¢/(an+1))/N} - |’

(12)

Figure 3: p(n, f) for a(0) corresponding to two frequen-
cies 0.2 and 0.4 with n, = 6 .

To verify the validity of this model, i.e. Eqns. (10-
12), a vector parameter a(0) and an ambiguity order n,
have been chosen. The sequence a(n) has been gener-
ated and p(n, f) represented with gray levels in Fig. 3.
A detailed analyze of this image shows that it verifies
the symmetry properties required by Eqn. 6.

4. Estimation algorithm

The temporal regression associated to the evolutive AR
model is:

ag(n)z, = —ay(n)zpy — ax(n)c,_s— ..
~ap(n)Tpn_p + &,, (13)
p
ax(n) = D" % q(n).aq(0), (14)
q=0
ao(O) = 1,E{E,21} = 0’2. (15)

If we replace in Eqn. 13 the AR coefficients by their
expression and if we define the quantities:

P
zq(") = Z7k,q(n)rn—k, (16)
k=0
we obtain the following temporal regression:
20(n) = ~z1(n)ar(0) = - - — z,(n)a, (0) +¢,
E{el}) = o2,

This result allows the estimation of the parameters
{ax(0)}x=1,, using a classical least squares algorithm!.
However, this development requires the knowledge of
the ambiguity order n, to compute the y4 4(n). We pro-
pose to solve this problem evaluating the {ax(0) }e=1,

'In the case where an & 1, zg(n) must be replaced by (an+
1)z¢(n) in Eqn. 16
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for a predefined set of n,.. This scanning can be per-
formed with a reduced computational load observing
that in Eqn. 12 n, is present only in the first term. For
each n, the associated {ax(0)}x=1, are estimated and
the variance of the corresponding sequence &,, gener-
ated by Eqn. 17, is calculated. The estimated value of
n, is naturally the one that minimizes o°.

5. Computer simulations and
discussion

This algorithm has been validated using various com-
puter simulations. To illustrate its behavior we con-
sider the following two experiments:

1. z(t) consists of three noisy sine waves at frequen-
cies 6.12, 6.3 and 6.4. 128 samples of the as-
sociated nonuniformly sampled signal have been
generated and corrupted by six realizations of a
white noise with a SNR of 10dB. The algorithm
parameters are a = 0.0003, N =100, p=9.

2. z(t) consists of two noisy sine waves at frequen-
cies 5.11 and 5.22. 30 samples of the associated
nonuniformly sampled signal have been generated
and corrupted by six realizations of a white noise
with a SNR of 20dB. The algorithm parameters
are o = 0.0003, N =100, p="7.

Fig. (4,5) show that the ambiguity order has been cor-
rectly estimated for each noise realization and represent
the corresponding estimated spectrum.

We can notice that in the above simulations, the
signal is composed by spectral lines. Whereas the pro-
posed algorithm is not constraint to this case it is im-
portant to envisage it. In fact, the problem simplifies
to the sweep rate estimation of chirps for wich the in-
stantaneous frequency is given by Eqn. 4. Hence, many
of the existing algorithm can be adapted to solve the
problem: e.g., the Wigner-Hough transform, (7], be-
comes an integration of the signal Wigner Ville distri-
bution on lines defined by Eqn. 4. This conduces to
the following spectral estimator:

S(f) = szn%z;—k exp(—jdrkf(an + 1))

n k

This estimator has been tested in our context and it ap-
pears that although it has the advantage that it does
not require the band-limited hypothesis it has poor res-
olution compared to the proposed solution.
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Figure 4: Estimated o2 function of n, and estimated
AR spectrum for n, = 6, 128 samples, SNR=10dB.
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Figure 5: Estimated o2 function of n, and estimated
AR spectrum for n,. = 5, 30 samples, SNR=20dB.
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