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ABSTRACT

We provide a comparison between one-sided linear predic-
tion (OSP) and two-sided linear prediction (TSP) with re-
spect to prediction error, relationships to AR modeling and
to two-sided AR modeling, and the application to time se-
ries interpolation, linear-phase filter design, and spectral
estimation. New contributions of this paper include: (1)
proof that TSP produces smaller, non-white residuals than
OSP, extending previous results; (2) specification of the
frequency-domain error criterion minimized by TSP, and
comparison with the analogous OSP criterion; (3) demon-
stration that TSP and two-sided AR modeling are different
problems, unlike OSP; (4) interpretation of performance of
TSP interference-rejection filters.

1. INTRODUCTION

The one-sided linear prediction (OSP) problem arises in
many signal processing applications, such as spectral esti-
mation, speech coding, time series extrapolation and inter-
polation, etc. The basic idea of OSP is to estimate the
current sample value as a weighted linear combination of
past sample values. If the optimal prediction coefficients
are determined by minimizing the least-squares prediction
error, one must solve a Toeplitz or close-to-Toeplitz system.

Recently, two-sided linear prediction (TSP) has been
applied to various signal processing applications, including
spectral estimation, speech coding, linear phase filter de-
sign, time series interpolation [1], and system identification
[2]. OSP is sometimes used on a frame-by-frame basis, in
which case all the data samples in an entire frame are avail-
able for analysis. A better estimate of a sample would be
expected if we “predict” the present sample based on both
the past and future samples; this motivates the use of TSP
in these problems.

Although OSP and TSP seem to be very similar, there
are important fundamental differences between them. In
this paper, we study the properties of TSP and their re-
lation to those of OSP, investigating the similarities and
differences between OSP and TSP in terms of prediction
error, relationship to AR modeling and two-sided AR mod-
eling, time series interpolation, and spectrum estimation.

New contributions of this paper include the following:
(1) we prove that TSP produces smaller residuals than OSP
for any wide-sense stationary random process (generaliz-
ing a result for finite-order AR processes in [1] and [3]);
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(2) we specify the frequency-domain error criterion min-
imized by TSP, compare it to the analogous error crite-
rion for OSP, and discuss its implications for TSP spectral
estimates; (3) we show that TSP and the two-sided AR
modelling problem are different, whereas in OSP they are
identical problems; and (4) we provide some numerical ex-
amples of TSP applications. We also discuss issues such
as why TSP interference-rejection filters have faster rise in
their transition bands than OSP filters.

2. TSP MEAN SQUARE ERROR

2.1, TSP Prediction Error

In this section, we discuss two major properties of the TSP
prediction error: (1) The mean-square TSP prediction error
is always less than the mean-square OSP prediction error;
and (2) the TSP error process is not white. The first re-
sult is new for arbitrary wide-sense-stationary (wss) random
processes; it has been derived previously for finite-order AR
processes in [1). The second result was shown in [1].

Theorem : (NEW) Let z(n) be a zero-mean w.s.s. process.
Then the p**-order TSP mean-square error €2 = E[(z(n) +
o7, bi(z(n — i) + z(n + )))?] is less than the p™-order
OSP mean-square error €3 = E[(z(n) + Y7, aiz(n — 1))?]
for any specific value of p.

Proof : The mean-square error MSE for OSP and TSP can
be written as [2],[3]

E=r(0)—rTT'r; S=r(0)-2r"(T+H)'r (1)

where r = [r(1) - r(p)]T and r(n) = E[z(i)z(i +n)]. Tis
a symmetric Toeplitz matrix with first row [r(0)---r(p —
1)]. H is a Hankel matrix whose first column and last row
are [r(2)---r(p+1)]T and [r(p+1)--- r(ZI;)], respectively.
Subtracting 2 from €2, we have e —~¢3 = r (2(T+H) ™" —
T~1)r. We want to show that 2(T+ H)™' =T~ is positive
semidefinite; this proves €3 < <3.

Consider the covariance matrix of the random vector
[z(0)---z(p— 1) z(p + 1) - - - 5(2p)]T, which is

T JH]_[I0 I 0

g7 JTI | = |oJ|| JHIT™ I
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Since the above covariance matrix must be positive semidef-
inite, we conclude that T - JH T'HJ =

T2 — (T2 IR IT )T P IRIT V)T 2 0
(3)
which implies (T~*/2JHJT~'/?)? < I or equivalently 0 <
T + H < 2T. Then one can show 2(T + H)™' > T~'.QED

2.2. Special Cases

We now consider some SPECIAL CASES. First, for an
AR(p) process, we can show that the p'* order one-sided
predictor and two-sided predictor are related as follows [1}:

Let z(n) be a 0-mean p**-order AR process. Then [1]

1
{b,,---b;161---bp}=———P—az-{lal---a,,}*{a,---ax 1},

1+3.0, 4
@

& = ______c? (5)
2 1 + Z?’l a? ’
where a;, €3 and b;, £ are prediction coefficients and pre-
diction errors for OSP and TSP.

Let z(n) be a zero-mean w.s.s. process with PSD P;(w).
Then [1]

L ~1 2
&= [i / P,‘"(w)dw] , B(e’™) = P:(’w). (6)

27
—

where €2 is infinite order TSP MSE and B(e’”) is the op-
timal TSP error filter.
Note that the PSD of the infinite-order TSP error e(n)

can be written as P.(w) = |B(e’*)*Ps(w) = 'P_:(;«T)' The
infinite-order TSP error time series is clearly not white.

3. TSP AND TWO-SIDED AR MODELING

It is well-known that the OSP problem is closely related
to AR modeling and the AR spectral estimation problem.
In fact, the Wiener-Hopf equations for OSP problem and
the Yule-Walker equations for AR modeling are identical,
provided that they have the same model order.

We will show that, unlike the one-sided case, TSP coef-
ficients differ from two-sided AR (TAR) coefficients.

3.1. TAR vs. OSP: Similarities & Differences

We first present some results for TAR analogous to those
for OSP. Consider the LSI system

z(n) = — Z Br(z(n -~ k) +z(n+ k) +u(n). (7)
k=1

If u(r) is a zero-mean wss white process with variance a2,

then z(n) is a p*® order two-sided AR (TAR) process, and
the coefficients §; are termed the TAR parameters.

If B(z) = 1+ 3 ., Bi(z* + z7*) has no zeros on the
unit circle, then z(n) is the output of a stable noncausal
LSI system 1/8(z) driven by u(n), since the region of con-
vergence of 1/8(z) includes the unit circle. The region of

convergence is chosen as p < |z| < 1/p for some 0 < p < 1,
so that the inverse Z-transform of 1/8(z) is noncausal but
stable. The PSD of z(n) is related to the PSD of u(n) by

EO:T;(}‘—‘W S k) (8)

Multiplying (8) by A(z) and taking the inverse Z-transform
yields the Yule-Walker equations for the TAR model (7):

P (z) =

k=—~o00

o*h(—k) = 2’: Bir(k —1), —o0 <k L0 (9)

i=m—p

where h(k) is the inverse Z-transform of H(z) = 1/8(z).

Note that h(k) is symmetric, noncausal, and is a function

of Bx. Therefore, (9) is a nonlinear system of equations.
The TSP Wiener-Hopf equations can be written as 3]

36(k) = zr: bir(k—1i), -p<k<p. (10)

i=—p

It is obvious that (10) and (9) are different. Therefore, given
the ACF {r(i)}, the TSP coefficients b; obtained by solving
(10) will be different from the TAR parameters f; obtained
by solving (9). This differs from the one-sided result.

In summary, for the one-sided model, the Yule-Walker
equations which describe the relationship between the AR
parameters and the ACF are the same as the Wiener-Hopf
equations which describes the relationship between OSP co-
efficients and ACF. However, for the two-sided model, the
Yule-Walker equations (9) and the Wiener-Hopf equations
(10) are different. Consequently, the TSP coefficients are
not the same as the two-sided AR parameters.

3.2. TSP Spectral Estimation

For this reason, the intuitive generalization of the OSP-
based spectral estimator
- -]

P(s) = gymeT = L TR @

k=—o0

where B(z) is the optimal two-sided predictor and €2 is TSP
MSE, will give a biased spectral estimate. The reason for
this is the incorrect assumption implicitly made in (11} that
the residual signal of TSP is white. Here we deliberately
choose the notation B(z) instead of 8(z) to distinguish the
TSP coefficients b; from the TAR parameters §;.

Despite this, TSP is useful in some spectral estimation
problems. For example, the Prony line spectrum estimator
is based on TSP. We will now discuss another application
of TSP, a TSP-based AR spectral estimator.

Define the revised spectral estimator

Pa(s) = o 12)
B
where B(z) is the optimal two-sided predictor and €3 is the
two-sided prediction error power. We now show for a true
AR(p) process, (12) yields the true spectrum. We have

Bey= AQACT)  a__ d g

1+ .06l 1+ 50,0

i=1 "8
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where A(z) and &} are the one-sided prediction error filter
and prediction error power, respectively. Then (12) is

2 2

Pi(2)= B( j A(z)A(z") = Preue(z). (14)

The last equality comes from the fact that OSP coefficients

are the same as the AR parameters and the OSP error power
is equal to the excitation noise variance.

Since this only holds for true AR processes, the TSP-
based spectral estimator (12) is not suitable for non-AR
processes. We can also show that it does not have the cor-
relation matching property of OSP. However, since any wss
process can be approximated by a high-order AR process,
(12) is valid as p — oco. This is the result of [1].

3.3. Frequency-Domain Error Criteria

To discuss the frequency domain behavior of (12), we first
review some results from OSP. It has been shown that the
mean square prediction error criterion in OSP is equivalent
to the following frequency domain error criterion:

Ele(n)’] = 2 / i’i‘;’i . (15)

An important feature of (15) is that P,(u) fits P;(w) better
where Pr(w) is greater than P,(w), ie., Py(w) tends to fit
peaks better than nulls. This is because the contribution
to Efe(n)?] is more significant when P:(w) is greater than
P;(w) than when P;(w) is smaller.

We now show that minimizing the TSP mean square
error is equivalent to minimizing the following frequency
domain error criterion:

2 e [T P (“’)
Ele(n)’] = 21‘_/ Pl )2 w. (16)
Since e(n) is the output of the TSP error filter B(z) driven

by z(n), the PSDs of e(n) and z(n) are related by P.(w) =
P:(w)|B(e’)|?. Therefore, we have

Ele(n)’] = — / Py(w)dw = 22 / P((“’)ld amn

It implies that P.(w) fits Pr(w) better where P (w) is small,
i.e., Pz(w) tends to fit nulls better than peaks because the

contribution to E[e(n)?] is more significant when Py (w)/ P (w)?

= 1/P.(w) is large. This error criterion is quite different
from that of the OSP-based spectral estimator.

4. TSP APPLICATIONS

4.1. Linear-Phase FIR Filter Design

A special class of linear-phase FIR filters is the TSP error
filters or smoothers

z(n) = - Z bi(z(n — i)+ z(n + 1)) + e(n) (18)
i=1

where z(n) is the input signal and e(n) is the output sig-
nal. It has been used to suppress narrow-band interference

in a direct-sequence spread-spectrum system. Although it
has been observed that it provides a much faster rise in
the transition band, and smaller ripples in the pass band,
compared to the combination of OSP error filters and their
matched filters, no explanation for this has been given.

From (16), we now know that TSP-based spectral esti-
mators terd to match spectral nulls better than the OSP-
based spectral estimator. Thus our treatment of TSP ex-
plains a result not understood previously.

4.2. Data Interpolation

To recover a missing point in a time series, either OSP or
TSP can be used. According to results above, TSP yields
smaller MSE than OSP, and hence will give better estimates
with no additional multiplications in the interpolation.

To illustrate this, we used a broadband AR(4) process
with coefficients [—1.352,1.338, —0.662,0.24]. The perfor-
mances of the one-sided covariance method (MCOV), the
two-sided autocorrelation method (TSA), and the two-sided
covariance method (TSC) were evaluated. The MSE ob-
tained as the average of 50 realizations of data length 512
each for orders p = 1,-.-6 are shown in Fig. 1. It is
clear that the two—sxded covariance method (TSC) yields
the smallest MSE.

4.3. Spectral Estimation

To test the ability of the TSP-based spectral estimator to
separate close spectral lines, we used

z(n) = cos(1.3n)+cos(1.52)+0.1u(n), 0 < n <255 (19)
where u(n) is a white Gaussian sequence with unit vari-
ance. The model order used was 4 in OSP and 2 in TSP.
50 estimates of each method were obtained by computer
simulation. The OSP covariance method failed to resolve
the two sinusoids, while the TSP covariance method suc-
cessfully resolved them, as shown in Fig. 2.

We now consider the case of a white signal in narrow-

band interference:

+
z(n) = Y _ cos((1.3 +0.05)n) + 0.1u(n), 0<n < 1023.
=0 :
(20)
The model order used was 15 in both OSP and in TSP. The
amplitude responses of the TSP error filter and the combi-
nation of the OSP error filter and its matched filter were
obtained by computer simulation. 50 estimated amplitude
responses each of TSP and OSP error filters are shown in
Figs. 3 and 4. It is clear that the TSP error filters provide
faster rise in the transition band and smaller ripples in the
passband. This makes TSP filters suitable for narrowband
interference rejection, as noted previously.

5. CONCLUSION

This paper has presented a comparison of the OSP and TSP
problems. The results can be summarized as follows. While
the OSP error processes are white, the TSP error processes
are non-white, and have spectra proportional to the inverse
of the signal spectra. The TSP MSE is always smaller than
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the OSP MSE, and it is smaller by a known factor for finite
order AR process. Unlike the one-sided case, the optimal
TSP coefficients are different from the TAR parameters.
When applied to spectral estimation, frequency-domain er-
ror criteria show that OSP tends to match the spectrum
peaks while TSP tends to match the spectrum nulls. Fur-
thermore, the correlation matching property holds in OSP,
but not in TSP. Various applications of TSP, including FIR
filter design, and linear interpolation, were also discussed.

" These results were published in[4].
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