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ABSTRACT

This paper considers the estimation of the parameters
of a linear discrete-time system from noisy input and
output measurements. The conditions imposed on the
system are quite general. The proposed method makes
use of an instrumental variable (IV)-vector whose cross-
covariance with the system’s regression vector is pre-
and post-multiplied by some prechosen weights. The
singular vectors of this matrix possess complete infor-
mation on the system parameters. A weighted sub-
space fitting (WSF) method is then applied to these
singular vectors to consistently estimate the parame-
ters of the system. The proposed method is non-iterati-
ve, easy to implement and has a small computational
burden. The asymptotic distribution of its estimation
errors 1s derived and the result is used to motivate the
choice of the weighting matrix in the WSF step and
also to predict the estimation accuracy. A numerical
example is included to illustrate the performance.

1. PROBLEM STATEMENT AND
SOLUTION

Consider a linear discrete-time system described by the
following difference equation ([3, 4, 5, 9]):

A(gYHz(t) = B(g7Y)z(t), t=1,2,3,... (1)
where

l+aig” 4. +ang™ (2)
bo + blq_l + ..ot bpg™ ™ (3)

Ag™Y) =
B(g™) =

For the sake of simplicity, the polynomials A(g~!) and
B(g™1), in the unit delay operator ¢~!, are assumed to
have the same degree (which is a minor restriction). It
is also assumed that:
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A1l. A(q~1) has all zeros strictly outside the unit circle,
and A(¢~!) and B(¢~!) have no common factors.

The noise-corrupted measurements of z(¢) and z(t)
are denoted by

u(t) = z(t) + w(t) 4)
B(¢g™?)

y(t) = z(t)+v(t) = z(t)+v(t). (b
) () +0(2) A(q—l)() ®). ()

All signals appearing above are assumed to be station-

ary. The following additional assumption is made on

the noise sequences in (4) and (5). .

A2. The input noise w(t) is finitely auto-correlated

and also finitely cross-correlated with v(t), in the fol-
lowing sense:

Elw(t — k)w(t)] =
E[w(t - k()] =

0 for k| > L (6)
0 for k> L )

where L is a given positive integer. Furthermore, both
w(t) and v(t) are statistically independent of the noise-
free input z(t).

The above noise conditions are more general than
those used in most previous works (See e.g. [1, 2]). Note
that in A2 only the input noise is required to be finitely
correlated; the output noise v(t) may be arbitrarily cor-
related.

This paper focuses on the problem of estimating the
system parameters {a;, b;} from samples of
{u(t), ¥OHL,.

The following additional notation is required. Let
pt) = (-y(t—1)...—y(t —p),

ut —1)...u(t —p)T (8)
() = (wit—p—1L)...ut—p— L—m+1)T(9)

where p > n and m > p+ n. Also let ¢(t) and @(¢)
denote the signal and, respectively, the noise part of

o(t).
Let Ry, denote the following covariance matrix

Ry = E{y()¢" (1)} (m x 2p) (10)
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and similarly for Ryy and R,,. The vector 4(t) is
usually called an IV vector because it is uncorrelated
with the noise part of ¢(¢), and hence it can be used
to extract the signal part of (t). Let

R = Ryy/* Ry, Ry}l (1)

It can be proved [6] that under a mild “persistence-of-
excitation” assumption on the noise-free input z(t),

rank[R] = n + p. (12)

In view of (12) we can write the singular value decom-
position (SVD) of R as

7 2Y(E):

Finally, let

=UzsT. (13)

la ...an 0 by ... b, o\ T
G= .. (14)

0 1 a; ... an 0 bo ... by

A key result, proved in [6], is that
GTRY2S = 0. (15)

Ri,/: S in equation (15) is consistently estimable from
the available samples, and G is linear in the unknown
parameters. Hence (15) can be used for parameter esti-
mation in a rather obvious manner as explained in the
following. Let

R=FRy*Ry,R;\* (16)
where RW, = ¥ Zt LY@ (t) and RW,, pp are
similarly defined. Furthermore, let

S = the matrix made from the (n + p)

principal right singular vectors of R. (17)

Once S and R}a{,? have been computed, the next step
should be to obtain parameter estimates by minimiz-
ing a suitable scalar function of the matrix GTRI/ 25
(cf (15)). In finite samples the accuracy with which
the columns of S are determined can be expected to
be proportional to the corresponding singular values.
In addition, better performance may be expected if
not only S but also the matrix G7 R;{,? in the sample
counterpart of (15) would be orthogonal 7, 8]. These
two arguments suggest the following Frobenius-norm
loss function whose minimization with respect to 6§ =
(1ay...an by...b,) yields the parameter estimates:

i N =2 _
76) =11 (CTR,G) GTRYZSEIF  (18)

where & denotes the sample analogue of X defined in
(13). Minimization of (18) is a highly nonlinear prob-
lem. Fortunately, owing to the special structure of (18)
it can be shown that parameter estimates having the
same asymptotic properties as the minimizer of (18)
can be obtained by the following multistep but non-
iterative procedure.

Step 1 Obtain initial parameter estimates by mini-
mizing (18) with GT R,,G replaced by

[ 1 o]ﬁw[é]. (19)

Step 2 Use the initial estimate of Step 1 to determine
a consistent estimate of (GT Ry, G)~!. Minimize
(18) using this consistent estimate of the ‘weight-
ing matrix”.

Step 3 (Optional). Reiterate Step 2 using the most
recent estimate of 6.

Clearly all steps above are covered by the quadratic
problem:

min tr [éW@Tﬁl (20)

where A = RY25525TRY2 and W takes on differ-
ent values dependmg on the step under discussion. It
can be shown that the general problem (20) can be
solved in the following efficient way. We let Q denote
the Kronecker product W ® A from which the rows
and columns corresponding to the zeros in vec(G) are
eliminated, and also denote by Q the following matrix

(21)

Then the TLS (Total Least Squares) solution to (20) is
given by

Q=1 rje[r - 11",

§ = the minimum eigenvector of {2, with the

first component normalized to one (22)

2. ASYMPTOTIC DISTRIBUTION

This section establishes the asymptotic distribution of
the parameter estimates introduced previously, under
the assumption that the data are Gaussian distributed.
First, we note that the consistency of the method can
be proved using the same analysis technique as in [6],
to which we refer for details. Since § is a consistent
estimate of § we can make use of a standard asymptotic
Taylor series expansion to write [3, 5]

6—6~—(f9))"" 7 (6) (23)
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where the symbol ~ denotes a first-order approximate
equality in which all terms that do not affect the asymp-
totics (w.r.t. N') have been neglected, and where f”(9)
and f’(6) are the Hessian matrix and, respectively, the
gradient vector of f(6), evaluated at the frue param-
eter values. The derivation of appropriate asymptotic
approximations for f/(#) and f”(#) can easily be done

as follows. Let
. _ 95

39k (24)

where § = vec(G). Then
£(0) = 2T (W o B) J (25)
and, noting that §Z’j =0,
o) = 25T (We RYZSE?STRY) g, (26)

From the above calculations and the rule vec(ABC) =
(CT @ A) vec(B) it readily follows that

§ — 9~ —H-'DT vec(AGW) (27)
where

D = (&1 Gons1) (28)
H = DT (WeRYZSTSTRYZ) D. (20)

Hence, in order to compute the large-sample covariance
of § it is necessary to derive the asymptotic covariance
matrix of vec(AGW). Towards that end, note from the
sample analogue of (13) that

o~ o~

AG = Rl/zRUE 1828-10T RRY2G
= RT R,JUUTR;*Ry,G  (30)

Next we make use of the decomposmon o(t) = <p(t) +
@(t) and the fact that @7 (¢ )G = 0 to see that RW,G
tends to zero as IV tends to infinity. It follows that
ﬁT ]/:E_ilsz\ff\Tﬁ_l/z in (30) can be replaced by its
true value without changing the asymptotic properties
of AG. Hence we obtain the following asymptotically
valid expression for vec(AGW)

N

% > @) @ u(t)

vec(AGW) = (WGTQK) . (31)

where K 2 RﬁwR,;;,/zUUTR;;/Z. Now we make the
assumption that the data is Gaussian distributed. (No-
te that, up to this point, no assumption on the distribu-
tional properties of the data has been utilized.) Under

the Gaussian assumption the following covariance ma-
trix can readily be derived [6]

cov|: Z (1) ® ¥(1)

= sz N -l

o) = Blp®@(-0] px2)  (33)
Ty() = ER@)WT(E=1)] (mxm). (34)
By combining (27), (31) and (32) we obtain the follow-

ing large-sample expression for the covariance matrix
of the (Gaussian distributed) estimation error # — 8:

cov(f) =

s( @ Ty(D)] (32)

H™'DTTDH™! (35)

where

N
I = (WGF @ K) [% S (N - |1|)[r¢(1)®r¢(1)]]
i

=—N

(GW @ KT)

N
- %E(N— ID[WGETT, (NGWRKT,()KT] (36)
I=-N
In the last equality of equation (36) we used the fact
that <,5T(t)é =0.

If |Ty (1) @ Tg(1)]| decreases rapidly as |{| increases,
then a suboptimal weight can be obtained by neglecting
all terms in (36) except the zeroth-order term, and then
minimizing the so-simplified covariance matrix (35)
with respect to W. Doing so we obtain the weight
used in (18):

Wo = (GT Ry G) ™ (37)

3. NUMERICAL EXAMPLE

Consider the system described by the equations (4), (5)
with

1—1.8778¢~ ! +0.9025¢2

1-¢ 1 405¢72

Al =
B(¢') =
The noise-free input signal is generated as the following
moving average:
() = (0.74+0.8¢71+0.9¢724¢73
+0.9¢7*+0.8¢7° +0.7¢"%)e(t) (38)
where e, (t) is white noise of unit variance. The input

and output noises are generated as first-order moving
averages:

w(t)=(140.5¢7 ey (), v(t)=(140.5¢" e, (t) (39)
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Figure 1: RMSE values for the proposed method. Solid
lines = Theoretical RMSE; “x”=Empirical RMSE
for p = 3; “”=Empirical RMSE for p = 4;
“4+” =Empirical RMSE for p = 5.

where e, (t) and e,(t) are white noise sequences that
are uncorrelated with each other. The variances of
ew(t) and e,(t) are selected so that the signal-to-noise
ratio (SNR) equals 11dB. The SNR is defined as [6]

SNR = E[z’(t)]/E[A(¢”")v(t) - B(g™Hw(®))®. (40)

Both the method described in this paper (Step 3 is it-
erated four times) and the optimal IV-WSF procedure
introduced in [B] are used for estimating the system
parameters. We estimate the parameters of the sys-
tem above from N = 1000 data samples, for p = 3,4, 5
and m = p+2,...,12. One hundred Monte-Carlo sim-
ulations are used to determine the root-mean-squared
errors (RMSE) of the various parameter estimates.
Figures 1 and 2 show the RMSE values for the
methods under study. The Figures also show the theo-
retical standard deviations computed by using the cor-
responding asymptotic covariance expressions. To re-
duce the number of graphs we only plot: std(é) =
[std(@1)+std(a@2)]/2 and similarly for the b-parameters.
Comparing Figures 1 and 2 we see that the pro-
posed method and the optimal IV-WSF procedure of
[6] possess similar performance. On the other hand, the
method of [6] is 30 to 40 times more computationally
intensive than the proposed method for this example.
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