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ABSTRACT

Being linked by non-linear relations, AR parameters

and reflection coefficients cannot both be gaussian. How-
ever, a statistical study can show that these two sets

of parameters are gaussian asymptotically. The aim

of this paper is to show that the convergence rate of

reflection coefficient distribution to the gaussian one

depends on the position of AR model poles in the unit

circle. An analysis of the reflection coefficient Taylor

expansion around AR parameters is proposed to deter-

mine this convergence rate.

1. INTRODUCTION

Reflection Coeflicients have successfully been used in
Signal Processing. They have particularly desirable
properties for quantization and coding. These coef-
ficients can be computed from AutoRegressive (AR)
parameters. There are at least three classes of appli-
cations for which AR parameters are assumed to be
gaussian :

¢ in Estimation theory, AR parameters are deter-
ministic and have to be estimated. According
to the Mann and Wald theorem, most commonly
used AR parameter estimators can be assumed to
be gaussian when the parameters are estimated
for sufficiently large data records [1].

o in Pattern Recognition, AR parameters are ran-
dom and their statistics, which characterisesintra-
class scattering, is usually assumed to be known
(generally gaussian).

¢ In the theory of random coefficient AR models,
many methods have been developed using the
gaussian assumption{6].

Consequently, in the sequel, the parameter vector
of an AR process will be considered as a random gaus-
sian variable denoted by a with mean m, = E (a) and
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covariance matrix C; = 0>M, M being a constant ma-
trix. In this case, a recursive way of determining the
exact probabiliy density function (p.d.f.) of reflection
coefficients from that of AR parameters can be derived
[2](3]. This study is briefly recalled in the first part of
the paper. In the previous applications, reflection co-
efficient p.d.f. tends to the gaussian one when 02 — 0
[1]. The aim of this paper is to show that this tendency
depends on the position of AR poles in the unit circle
and this dependency is theoretically explained.

2. REFLECTION COEFFICIENT P.D.F.

Reflection coefficients are linked to AR parameters with
the following relations :

i)_af;)a?_)_

T

k,‘ = a(-i)

. ¢
1<j<i-1 o=t

i=1,..,p

The parameters agi),j = 1,...,7 are the ith order lin-
ear predictor coefficients. For i = p, these parameters

are identical to AR parameters :

j=1..,p agp)zaj

Vectors [a(li), e az(.i)} are computed recursively for

i =p-1,..,1from AR parameters and relation (1).
Each step allows us to determine one reflection coeffi-
cient k; = agi). The aim of this first part is to remind
the reader of a recursive way of determining reflection
coefficient p.d.f. as a function of that of AR parame-
ters. For this, let us denote

Vil = [agj’), a;p_—ll), ) at,, a,(-i)z,

]
This vector can be split into two parts :

o the first one has p — i + 1 components equal to
the p — ¢ + 1 reflection coefficients:

[al(f’),a;,p__ll), ...,af:i) = {kp, ..., ki
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o the second one has i — 1 components:

[() o, .o

i1 G2y

In particular, for i = p, we get the AR parameter
vector V, the p.d.f. of which is assumed to be known
and, for 7 = 1, we get the reflection coefficient vector
Vi, the p.d.f. of which is under study.

The p—i+1 first components of vectors V; and V;_;
are equal and the ¢ —1 last ones are linked by relations
(1) which can be inverted according to the parity of .
This allows us to determine the jacobian of the one-to-
one transformation between V; and V;_; components
(for more details see {3]). If fi(zp,xp-1,. 21)denotes
the V; p.d.f., that of V;_; can then be computed with
the following relations:

e i odd
i—1)/2 :
firt (@, z) = (1=2) V5 () @)
withz = (ZP, ...... Vi, Tioy F LTy, e, L14TiTio1).
e i even
i-2)/2 "
fiet (2, 1) = (L 23) (1= 21) 72 £ (o)
(3)
with z' = (zp, -oenoe i, Tiol + iy, ..,

(14 zi)zif2, ..., T14TiTioy) .

By means of p iterations, using (2) and (3), the re-
flection coeflicient vector p.d.f. can be computed from
that of the AR parameter vector.

3. REFLECTION COEFFICIENT
GAUSSIANITY

From reflection coefficient p.d.f. computed in the first
part of the paper, usual “distances” between proba-
bility density functions can be used to determine the
“closeness” between reflection coefficient p.d.f. and the
gaussian one [4]. For instance, the Kullback divergence
between two p.d.f. pjand pa, which is defined by:

drprn) = [ 1) = pr (@)]0 2D
R p1(z)

is often considered to determine how far away from
each other two probability laws are. But relations be-
tween this distance and the AR model poles or parame-
ters cannot be easily interpreted. In order to study the
tendency of reflection coeflicient p.d.f. to the gaussian
one when parameter o2 tends to zero, a new approach
is proposed. Using the same method as in [1], for low

o? values, a will only exhibit values close to m,. Hence,
k = & (a) will be close to m; = @ (m;). A Taylor ex-
pansion then leads to the following relation :

k=®(a) = ®(ma) + igg’la_m (a—my)

—Ma

+x a‘i{f (a—mg,a—mg) + ...

A=M,

%l andﬁa(f;%gl being the first and second order
derivative of the function ®.Let us assume that third
and higher order terms in this development are negligi-
ble with respect to the two first ones (which is the case
for low o2 values) and let us note:

_ 9%(a)
G= oo . (a —my) (4)
and
1T 9%®(a)
NG—'§ W—a=ma(a—ma,a—ma) (5)

Under these conditions, the gaussian or non-gaussian
nature of reflection coefficients is due to the second
term NG. If the development were reduced to k—m; =
G, there would exist a linear relation between k — m;
and a —m,. These two vectors would both be gaus-
sian. On the other hand, when the second order term
is not negligible, the vector k — my ~ G+ NG is no
longer gaussian. Let us denote by M% the X variable
kth moment and let us consider the following distance
between variables G and G + NG :

d(G,G+ NG) ZlMG'MG’fNG’ de (6)

This distance comes from the /; norm applied to in-
finite sequences of the form 1 '—All,l, . g—% . which
appears naturally in the development of the character-
istic’ function in terms of its moments. It can only
be used for variables satisfying “regularity” conditions
that can be found in [5]. Under these conditions, it can
be shown that

lim d(G,G+NG) =0

which can be used to show that reflection coefficient
p.d.f. tends to the gaussian one when o2 tends to zero.
For low o2 values, only the first terms in (6) can be
considered. The convergence rate of reflection coeffi-
cient p.d.f. to the gaussian one depends on these terms,
which are linked to AR model poles.
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For example, let us consider the simple case of an
order 2 AR model with two conjugated complex poles
p1 = pel® and pa = pe~7¥. The second reflection coef-
ficient, which is equal to the second AR parameter, is
gaussian. Thus, only the first reflection coefficient has
been considered. The first term in equation (6) cor-
responding to this coefficient can then be determined.
The following results are obtained (see appendix):

—2pcppcosp €12
(1+02)° (1402’

dl =0’2

(7)

with G, = o2 [ ‘11 92
C12 Ca2

can be derived in a similar way. The d(G,G+ NG)
variations as a function of p and ¢ can then be approx-
imated by using the first terms in (6). For an order 2

AR model with C, = 102 ( 105 ), the following

results can be obtained :

Higher order terms

05 1

d(G.G*NG)
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Fig. 1.(a) Variations of d(G,G + NG) for the first
reflection coefficient as a function of p (¢ = %)
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Fig. 1.(b) Variations of d(G,G + NG) for the first
1

reflection coefficient as a function of ¢ (p=1)
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In these figures, the solid and dashed curves repre-
sent respectively the variations of the first term given
in (7) and the sum of the two first terms dy1d>. As can
be seen in Fig. 1., there is little difference between the
two curves. The higher the d (G, G + NG), the lower
the convergence of the reflection coefficient p.d.f. to
the gaussian one.

To give an insight into how it compares with a con-
ventional distance, let us plot the Kullback divergence
between reflection coefficient p.d.f. (determined in the
first part of the paper) and the gaussian one. The fol-
lowing results are then obtained :
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Fig. 2.(a) Kullback divergence between the first
reflection coefficient p.d.f. and the gaussian one as a

function of p (p = %)
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Fig. 2.(b) Kullback divergence between the first
reflection coefficient p.d.f. and the gaussian one as a

function of ¢ (p=1)

It is easy to show that the qualitive behaviors of the
two approaches are very similar. Numerous simulations
allow us to think that the convergence of reflection co-
efficient distribution to the gaussian one (when param-
eter 0 tends to zero) is fast when the corresponding
AR model poles are close to the unit circle.



4. CONCLUSION

The following new results are proposed in this paper:

o The first part is devoted to the determination of
the reflection coefficient p.d.f. from that of AR
parameters.

¢ This p.d.f. is then studied in the case of gaussian
AR parameters, the covariance matrix of which
is of the form C, = ¢2M, M being a constant
matrix. It is well known that this p.d.f. con-
verges towards the gaussian one when parameter
o? tends to zero. The convergence rate of this
p.d.f. to the gaussian one is then studied as a
function of the position of AR poles in the unit
circle.

5. APPENDIX

The aim of this section is to determine the first mo-
ments of variables G and G+ NG in the case of an order
2 AR model. Similar results can be obtained for higher
orders. AR parameters and reflection coefficients are
linked by the following relations:

()=+(2)=(%)
kg az an

which leads to:

my
ma
and (5), we then obtain :

g —my __ ml(ﬂz—";ﬂ
14m2 (14m2) -
as —mz

[mi(aa—m3z)’=(a1-mi)(az—ma)(1+m2)]
(1+ma)?

. withm, =

) = E(a). Using equations (4)

NG =
0

As can be seen, the second term in NG is equal to
zero, which comes from the gaussianity of the second
reflection coefficient. The moments of the first term

in NG can be determined as a function of the AR pa-

2 C11 C12 For

rameter covariance matrix C; = o
C12 C22

instance, using
E [(ag - mg)z] = C22
E[(ay —m1)(az —ma)] = c12

allows us to determine the mean of NG:

myeaa—c1a2(14ms)
| )

14m32)
0

E(NG) =¢? (

that is to say, as a funcuion of the AR model poles:

—2pcyaco8p
(1+9%)°

. Ty
E(NG)=0¢"
0

It is well known that higher order moments of the
Gaussian distribution can be determined as a function
of its mean and covariance matrix . This allows us to
compute, in a similar way, higher order moments of

NG.
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