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ABSTRACT

This paper proposes a method for realization of an AR-
MAX lattice filter. ARMAX (Autoregressive Moving Av-
erage model with Exogenous Variable) model identification
is significant because the ARMAX model is a standard tool
in the control field, and it can be performed by the proposed
algorithm. One of the recursive least-square methods for
the ARMAX model identification is the ELS (Extended
Least Squares). Applied to the ARMAX model identifica-

tion, the ELS uses o(\V?) multiplications, where N 2 AR
order + MA order + X order. When the proposed real-
ization method of the ARMAX lattice filter is used, o(M)
multiplications are needed for the ARMAX model identifi-

cation, where M £ max{AR order, MA order, X order}.

1 INTRODUCTION

When a reference model needs to be identified, a type
of model and an identification method should be de-
cided. Suppose the reference model is an ARMAX model
(Autoregressive Moving Average model with Exogenous
Variable)[1], its parameters can be computed by the least
square method. Since the ARMAX model has become a
standard tool in control, ARMAX model identification is
significant. One of the recursive least-square methods for
the ARMAX model identification is the ELS (Extended
Least Squares)[1l]. Applied to the ARMAX model identi-

fication, the ELS uses o(N?) multiplications, where N 2
AR order + MA order + X order.

In this paper, a realization method of an ARMAX lattice
filter is proposed. The proposed algorithm uses o( M) mul-
tiplications for the ARMAX model identification, where M

2 max{AR order, MA order, X order}.

First, the ARMAX model is introduced. Second the re-
alization method of the ARMAX lattice filter is derived:
It can be realized by the order-update procedures and the
time-update procedures. Finally, experiments of the model
identification are presented for verification of the proposed
algorithm.

2 A LINEAR SYSTEM — AN ARMAX
MODEL

The ARMAX model structure(l] is shown in Figure 1. In
Figure 1, signals y(k), u(k), and z(k) are an output signal,
an input signal, and an exogenous variable, respectively.

Figure 1 shows the followmg expression:
N

y(t) =Y aiy(t—i)+ Zczu(t -+ Zb,z(t -).(1)
i=1 =0 j=0

Using the proposed algorithm, suppose a reference model
can be described with the ARMAX model defined in Eq.
(1), then the estimated parameters a.(k) (i = 1,...,n),
bi(k) ( = 1,...,m), &(k) (I = 1,...,s), that minimize
the least-squares criterion, can be obtained where the esti-
mated parameters are

n
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Figure 1: The ARMAX model

3 A REALIZATION METHOD

The ARMAX lattice filter is realized by cascading six kinds
of elementary sections. The elementary sections can be de-
signed by order-update recursive formulas. Further, the
proposed algorithm can perform adaptive signal process-
ing, by time-updating the coefficients of the ARMAX lat-
tice filter. In this section, the elementary sections and the
time-update recursive formulas of the lattice coefficients are
derived.

3.1 The Elementary Sections of the ARMAX Lattice Filier

First. six kinds of prediction errors which are needed for
the realization of the proposed ARMAX lattice filter are
defined as follows, where it is assumed that the used input
signal is not a white noise:
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a forward prediction error for the
output signal y(i)
a backward prediction error for the
output signal y(i — n)
a forward prediction error for the
input signal u(3)
a backward prediction error for the
input signal u(i — m)
v m.s(ilk) a forward prediction error for the
exogenous signal z(i)
7t m.alilk) a backward prediction error for the
exogenous signal z(i — s)

In the above definition, subscripts of the above prediction
errors n, m, and s are AR, MA, and X orders respectively,
and k is the number of the data samples which are used for
computing the prediction errors.

Second, we derive order-update recursive formulas of the
prediction errors in order to realize elementary sections of
the ARMAX lattice filter. The order-update recursive for-
mulas perform the following procedures:

AR order-update formulas:
to increase the AR order of the prediction errors
by one order when their MA and X orders are
zero.

MA order-update formulas:
to increase the MA order of the prediction errors
by one order when their AR and X orders are zero.

X order-update formulas:
to increase the X order of the prediction errors by
one order when their AR and MA orders are zero.

ARMA order-update formulas:
to increase both the AR order and the MA order
of the prediction errors by one order when their
X orders are zero.

ARX order-update formulas:
to increase both the AR order and the X order of
the prediction errors by one order when their MA
orders are zero.

MAX order-update formulas:
to increase both the MA order and the X order of
the prediction errors by one order when their AR
orders are zero.

ARMAX order-update formulas:
to increase the AR order, the MA order, and X
order by one simultaneously.

Vrf,m,a(ilk)
Vh m.s(ilk)
€] m.s(ilF)

€n,m.s(ilK)

For example, the AR order-update recursive formulas are
as follows:

vl o.0(ilk)

f ‘11
Vn+l,0,0(l|k)

+ ﬂnoo(k)Vnoo(l—llk—l)
vor00(ilk) = vl g0(ilk) + l»‘n,o,o(k)'/n.o,o(ilk)
6£+1,o,0(i|k) = ﬁ 0.0(ilk)

+ l‘noo(k)'/noo('-llk"l)

entr00(ilk) = el o o(ilk) + Mn,o,o(k)Vn,o,n(ilk)
(The above equation is used only when an ARMA or

ARMAX section is connected after this AR section.)
77{+1,0,o(i|k) = ‘/1{ 0.0(ilk)
+ Hn 0, O(k)Vn 0, o(l —1k=-1)
Tn+r00(ilk) = In 0.0(ilk) + lJn 0.0 (k vl 0.0(¢]k)
(The above equation is used only when an ARX or
ARMAX section is connected after this AR section.)

(3).
where ;
vbel Vio.o(k) A VEO o(k)
bno.0(k) = = —— noo( )=—=
Vigolk—1) I:B o(k)
! 1
# ( ) Vio.0(k) ,u ( ) Vo o 0( k)
nOO V",,‘l(v)vo(k_l) nOO V-vf)o(k'
s
Vio.0(k)
n.0,0(k —
H 00( ) V”'(’)O(k—-l)
viy? Ja nVO.O(k—l)
Mnoo(k) = ———F—— 4)
Vioo(k)
edet A ol
Vark) £ ) edma(ilk)ed m.Gilk)
i=1
e,e/ ef
(If ef =], then V12 (k) = V, 1 (k).)
k
ebeb
VAT £ erhoma(ilk)eat ma(ilk)

i=1
(If et = b, then VI3 (k) = V1 (K).)
k
itk 2 Y edmaiketali-1k-1) (3)
i=1
In the above equations, e; and ey are v, ¢, or «, respectively.
Based on the order-update recursive formulas of the pre-
diction errors, six kinds of elementary sections can be re-
alized as shown in Figure 3. In Figure 3, all the lattice
parameters are computed with the correlations of the pre-
diction errors, Since the structure of the ARMAX section
is complicated, the coefficients of the ARMAX elementary
section are not described in Figure 3.

3.2 Time-update recursive formulas for the coefficients of
the ARMAX Lattice Filter

In order to realize the ARMAX lattice filter, we need to
time-update the values of the filter coefficients shown in
Figure 3. As a consequence of Eqgs. (3), (4), and, (5), the
filter coefficients are calculated with some correlations of
the prediction errors. Therefore, the filter coefficients can
be time-updated by time-updating the correlations of the
prediction errors. For example, the time-update recursive

formula for Vn"fu o(k) is shown as follows:
Vnu,{n,a(k) ’\{anm s(k)+Al(k_1)Vnm3(k|k—l)}
_‘42(k -—w-= 1) {V;f,m,s(k - w[k - 1)
~af (k= w =1k = 1)4;(k — 1)
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Vim o (k= wlk = 1)} (6)
where X is the forgetting factor[3], w is the sliding window
length[4],

. A As(k—w—1)
Alk=D = e i- 1)
‘42(k—lv'—'1) é AY {l—Awan,m,s(k_w_l)}—l (7)

Further, in order to realize the ARMAX lattice filter. we
compute &n.m,s(k). @n,m,s(k — w), and an,m,s(k — w|k) by
order-update of them. For example, the AR order-update
recursive formulas of a are shgwn as:

an+1,0.0(k) = an0,0(k) + v 0 (klk — 1)

an+100(k = w) = an o0k = w) + v o (k —wlk— 1)

nt1.0.0(k — wlk) = an,0,0(k — wik)

+vn0.0(k — wlk = 1w o (klk — 1) (8)

The above formulas are similar to Reference [4]. How-
ever, of course, the proposed formulas and Reference [4]
differ in the prediction errors ~f and +5

3.3 An input estimation method for the proposed algorithm

One of the problems of ARMAX identification is estimat-
ing the input signal. In the proposed algorithm, the input
signal, @(k) can be estimated by the following equation:

ak) ~ (klk — 1) (9)

Vf
At oanas(k—1) VMS
where l/l{,y ar,s(klk—1) is the prediction error which is output
from the last section of the lattice filter.

4 EXPERIMENTAL RESULTS

The proposed method can perform the same ARMAX
model identification problems as the ELS can perform. In
order to verify the proposed algorithm, some of the exper-
imental results are shown in this section.

In Figure 2, (a) and (c) show the frequency characteris-

tics of the transfer functions %Z—;—-} and %:—:;—; of a refer-
ence ARMAX model (c.f. Figure 1). In the experiments,
since the output signal (y(t)) and the exogenous signal
(z(t)) are given and the input signal (u(t)) should be es-
timated in the ARMAX model identification problems, an
original input estimator is embedded in the proposed algo-
rithm.

In the experiments, 700 samples of the data, which are
sampled at 10 kHz are used, further, from Eq. (6), since
the proposed realization algorithm implys the forgetting
factor(3, 2] and the sliding window(3, 4], the forgetting fac-
toris set at 0.98 and a window length is 200 samples. Figure
2 (b) and (d) show the frequency characteristics of the esti-
mated models with an ARMA (8,4) order and an ARX (8,3)
order, respectively. From Figure 2, it can been seen that
the proposed algorithm can perform the ARMAX model
identification.

5 CONCLUSIONS

In this paper, an ARMAX lattice filter realization method
is proposed. By using the proposed algorithm, the ARMAX
model identification can be achieved with fewer calculation

Frequency [kHz]

50r

4.0

3.0-
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@ ® © @
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Figure 2: Experimental results

(a) ARMA part of the reference model (%(L:—:;—;)
(ARMA (6,2) order)

(b)  An identified model (ARMA (8,4) order)

(c) ARX part of the reference model (f;:—::;—))

(ARX (6,2) order)
(d) An identified model (ARX (8,3) order)

costs than the ELS algorithm when the reference model has
high ARMAX order.

Some considerations are still necessary for the compari-
son of the parameter-estimation accuracy of the proposed
algorithm and the ELS. The structure of the proposed lat-
tice filter also needs to be simplified. This can be done by
one of the characteristics from the input signal that is an
innovation.
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Figure 3: ARMAX lattice filter elementary sections
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